Lead Data Engineer - Compute Data Platform

Fairygodboss
Glasgow
6 days ago
Create job alert

Join us as we embark on a journey of collaboration and innovation, where your unique skills and talents will be valued and celebrated. Together we will create a brighter future and make a meaningful difference.

As a Lead Data Engineer at JPMorganChase within the Compute Infrastructure Platforms organisation you are an integral part of an agile team that works to enhance, build, and deliver data collection, storage, access, and analytics solutions in a secure, stable, and scalable way. As a core technical contributor, you are responsible for maintaining critical data pipelines and architectures across multiple technical areas within various business functions in support of the firm's business objectives.

Job responsibilities
  • Generates data models for their team using firmwide tooling, statistics, and contextual analysis
  • Delivers data collection, storage, access, and analytics data platform solutions in a secure, stable, and scalable way
  • Implements database back-up, recovery, and archiving strategy
  • Evaluates and reports on access control processes to determine effectiveness of data asset security with minimal supervision
  • Adds to team culture of diversity, opportunity, inclusion, and respect
Required qualifications, capabilities, and skills
  • Five years of relevant working experience with both relational and NoSQL databases
  • Experience and proficiency across the data lifecycle
  • Experience with database back-up, recovery, and archiving strategy
  • Experience architecting and managing data solutions on major cloud platforms (AWS, Azure, Google Cloud).
  • Demonstrated ability to implement and oversee data governance frameworks, including regulatory compliance.
  • Hands‑on experience designing, building, and optimizing complex ETL/ELT pipelines for large‑scale, distributed data systems.
Preferred qualifications, capabilities, and skills
  • Proven track record in database performance optimization, including query tuning, indexing strategies, and resource management for both relational and NoSQL systems.
  • Experience leading technical teams, mentoring junior engineers, and fostering collaborative, inclusive environments.
  • Ability to work closely with business stakeholders, data scientists, and software engineers to deliver integrated data solutions.
  • Strong skills in documenting data models, architecture decisions, and operational procedures for knowledge sharing and compliance.
  • Familiarity with CI/CD pipelines, automated testing frameworks, and monitoring tools relevant to data engineering.
  • Familiarity with modern enterprise level compute infrastructure including virtualised and cloud solutions.
  • Familiarity with Databricks, Parquet, Iceberg and, or other high volume solutions.
About us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first‑class business in a first‑class way approach to serving clients drives everything we do. We strive to build trusted, long‑term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.

About the Team

Our professionals in our Corporate Functions cover a diverse range of areas from finance and risk to human resources and marketing. Our corporate teams are an essential part of our company, ensuring that we're setting our businesses, clients, customers and employees up for success.


#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer (GCP)

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.