Lead Data Engineer

Made Tech Limited
1 month ago
Create job alert

As a Lead Data Engineer or architect at Made Tech, you'll play a pivotal role in helping public sector organisations become truly data-lead, by equipping them with robust data platforms. You'll also join a data team on its mission to get data knowledge and skills out of silos and embedded into delivery teams. You'll also help implement efficient data pipelines & storage.

Key Responsibilities

  • Define, shape and perfect data strategies in central and local government.
  • Help public sector teams understand the value of their data, and make the most of it.
  • Establish yourself as a trusted advisor in data driven approaches using public cloud services like AWS, Azure and GCP.
  • As employee growth is a huge focus here, we would expect you to contribute to our recruitment efforts and take on line management responsibilities.

Skills, Knowledge and Expertise

We are looking for candidates with a range of skills and experience, please apply even if you don’t meet all the criteria as if unsuccessful we can provide you with feedback.

  • Proficiency in Git (inc. Github Actions) and able to explain the benefits of different branch strategies.
  • Strong experience in IaC and able to guide how one could deploy infrastructure into different environments.
  • Knowledge of handling and transforming various data types (JSON, CSV, etc) with Apache Spark, Databricks or Hadoop.
  • Good understanding of possible architectures involved in modern data system design (Data Warehouse, Data Lakes, Data Meshes).
  • Ability to create data pipelines on a cloud environment and integrate error handling within these pipelines.
  • You understand how to create reusable libraries to encourage uniformity or approach across multiple data pipelines.
  • Able to document and present end-to-end diagrams to explain a data processing system on a cloud environment.
  • Some knowledge of how you would present diagrams (C4, UML, etc.).
  • Enthusiasm for learning and self-development.
  • You have experience of working on agile delivery-lead projects and can apply agile practices such as Scrum, XP, Kanban.
  • Can own the cloud infrastructure underpinning data systems through a DevOps approach.
  • Design and implement efficient data transformation processes at scale, both in batch and streaming use cases.
  • You are a skilled Data Engineer who has delivered data platforms.
  • Knowledge of SOLID, DRY and TDD principles and how to practically implement these into a project.
  • You can demonstrate a commercial mindset when on projects to grow accounts organically with senior stakeholders.
  • You have the experience to improve resilience into a project by checking for software vulnerabilities and implement appropriate testing strategies (unit integration, data quality, etc).
  • You are skilled at offering guidance on how one would implement a robust DevOps approach in a data project.
  • You can comfortably talk about tools needed such as DataOps in areas such as orchestration, data integration and data analytics.

Desirable Experience

  • Working at a technology consultancy.
  • Working with Docker and virtual environments as part of the development and CI/CD process.
  • Working with senior stakeholders to gather requirements and keep them engaged.
  • Experience in working with a team of engineers using a variety of techniques such as pair programming or mob programming.
  • Working with data scientists to productionise advanced data deliverables, such as machine learning models.
  • Working knowledge of statistics.
  • Working with multidisciplinary digital and technology teams.
  • Working within the public sector.

Like many organisations, we use Slack to chat to each other. The Slack groups that have formed give an idea of the diversity within Made Tech. If you’d like to speak to someone from one of these groups about their experience as an employee, let your recruitment agent or Made Tech Talent Partner know.

Employee Groups

  • disability
  • lgbtqiaplus-allies-and-activists
  • women-in-tech

We are always listening to our growing teams and evolving the benefits available to our people. As we scale, as do our benefits and we are scaling quickly. We've recently introduced a flexible benefit platform which includes a Smart Tech scheme, Cycle to work scheme, and an individual benefits allowance which you can invest in a Health care cash plan or Pension plan. We’re also big on connection and have an optional social and wellbeing calendar of events for all employees to join should they choose to.

Popular Benefits

  • Remote Working- we offer part time remote working for all our staff.
  • Paid counselling- we offer paid counselling as well as financial and legal advice.

An increasing number of our customers are specifying a minimum of SC (security check) clearance in order to work on their projects. As a result, we're looking for all successful candidates for this role to have eligibility. Eligibility for SC requires 5 years' UK residency and 5 years' employment history (or back to full-time education). Please note that if at any point during the interview process it is apparent that you may not be eligible for SC, we won't be able to progress your application and we will contact you to let you know why.

#J-18808-Ljbffr

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer | London, UK

Lead Data Engineer, Subscriber Solutions

Lead Data Engineer (Data Infrastructure)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.