Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Engineer, Subscriber Solutions

Disney Cruise Line - The Walt Disney Company
London
6 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Data Analyst With Business Objects

Senior Data Scientist

Senior Data Scientist London - Commercial

Lead Data Engineer

Disney Entertainment & ESPN Technology

On any given day at Disney Entertainment & ESPN Technology, we’re reimagining ways to create magical viewing experiences for the world’s most beloved stories while also transforming Disney’s media business for the future. Whether that’s evolving our streaming and digital products in new and immersive ways, powering worldwide advertising and distribution to maximize flexibility and efficiency, or delivering Disney’s unmatched entertainment and sports content, every day is a moment to make a difference to partners and to hundreds of millions of people around the world.

A few reasons why we think you’d love working for Disney Entertainment & ESPN Technology

  • Building the future of Disney’s media business:DE&E Technologists are designing and building the infrastructure that will power Disney’s media, advertising, and distribution businesses for years to come.

  • Reach & Scale:The products and platforms this group builds and operates delight millions of consumers every minute of every day – from Disney+ and Hulu, to ABC News and Entertainment, to ESPN and ESPN+, and much more.

  • Innovation:We develop and execute groundbreaking products and techniques that shape industry norms and enhance how audiences experience sports, entertainment & news.

About The Role

Subscriber Data Solutions builds and maintains best in class data products enabling business teams to analyze and measure subscriber movements and support revenue generation initiatives. The Lead Data Engineer will contribute to the Company’s success by partnering with business, analytics and infrastructure teams to design and build data pipelines to facilitate measuring subscriber movements and metrics. Collaborating across disciplines, they will identify internal/external data sources, design table structure, define ETL strategy & automated Data Quality checks. You will also help mentor and guide other more junior data engineers in their data pipeline development.

Responsibilities

  • Lead the successful design and implementation of complex technical problems.

  • Lead and contribute to the design and growth of our Data Products and Data Warehouses around Subscriber movements and metrics.

  • Use sophisticated analytical thought to exercise judgement and identify innovative solutions.

  • Partner with technical and non-technical colleagues to understand data and reporting requirements, and collaborate with Data Product Managers, Data Architects and other Data Engineers to design, implement, and deliver successful data solutions.

  • Design table structures and define ETL pipelines to build performant Data solutions that are reliable and scalable in a fast growing data ecosystem.

  • Develop Data Quality checks.

  • Develop and maintain ETL routines using ETL and orchestration tools such as Airflow.

  • Serve as an advanced resource to other Data Engineers on the team, and mentor and coach more junior members of the team helping to improve their skills, knowledge, and productivity.

Basic Requirements

  • 7+ years of data engineering experience developing large data pipelines.

  • Strong understanding of data modeling principles including Dimensional modeling, data normalization principles.

  • Good understanding of SQL Engines and able to conduct advanced performance tuning.

  • Ability to think strategically, analyze and interpret market and consumer information.

  • Strong communication skills – written and verbal presentations.

  • Excellent conceptual and analytical reasoning competencies.

  • Comfortable working in a fast-paced and highly collaborative environment.

  • Familiarity with Agile Scrum principles and ceremonies.

Preferred Qualifications

  • 4+ years of work experience implementing and reporting on business key performance indicators in data warehousing environments, required.

  • 5+ years of experience using analytic SQL, working with traditional relational databases and/or distributed systems (Snowflake or Redshift), required.

  • 3+ years of experience programming languages (e.g. Python, Pyspark), preferred.

  • 3+ years of experience with data orchestration/ETL tools (Airflow, Nifi), preferred.

  • Experience with Snowflake, Databricks/EMR/Spark & Airflow a plus.

Required Education

  • Bachelor’s degree in Computer Science, Information Systems, Software, Electrical or Electronics Engineering, or comparable field of study, and/or equivalent work experience.

  • Master’s Degree a plus.

Additional Information

#DISNEYTECH


The hiring range for this position in Santa Monica, California is $152,200 to $204,100 per year, in Seattle, Washington is $159,500 to $213,900 per year, in New York City, NY is $159,500 to $213,900 per year, and in San Francisco, California is $166,800 to $223,600 per year. The base pay actually offered will take into account internal equity and also may vary depending on the candidate’s geographic region, job-related knowledge, skills, and experience among other factors. A bonus and/or long-term incentive units may be provided as part of the compensation package, in addition to the full range of medical, financial, and/or other benefits, dependent on the level and position offered.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.

Top 10 Skills in Data Science According to LinkedIn & Indeed Job Postings

Data science isn’t just a buzzword — it’s the engine powering innovation in sectors across the UK, from finance and healthcare to retail and public policy. As organisations strive to turn data into insight and action, the need for well-rounded data scientists is surging. But what precise skills are employers demanding right now? Drawing on trends seen in LinkedIn and Indeed job ads, this article reveals the Top 10 data science skills sought by UK employers in 2025. You’ll get guidance on showcasing these in your CV, acing interviews, and building proof of your capabilities.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly evolved into one of the most important disciplines of the 21st century. Once a niche field combining elements of statistics and computer science, it is now at the heart of decision-making across industries. Businesses, governments, and charities rely on data scientists to uncover insights, forecast trends, and build predictive models that shape strategy. In the UK, data science has become central to economic growth. From the NHS using data to improve patient outcomes to financial institutions modelling risk, the applications are endless. The UK’s thriving tech hubs in London, Cambridge, and Manchester are creating high demand for data talent, with salaries often outpacing other technology roles. Yet despite its current importance, data science is still in its infancy. Advances in artificial intelligence, quantum computing, automation, and ethics will transform what data scientists do. Many of the most vital data science jobs of the next two decades don’t exist yet. This article explores why new careers are emerging, the roles likely to appear, how current jobs will evolve, why the UK is well positioned, and how professionals can prepare now.