Junior Data Analyst

Information Tech Consultants
Slough
1 day ago
Create job alert

!! IMMEDIATE JOINERS !!


💻 Junior Big Data Developer (Python & SQL Focus) 📊

We're looking for an enthusiastic and detail-oriented Junior Big Data Developer to join our data engineering team. This role is ideal for an early-career professional with foundational knowledge in data processing, strong proficiency in Python, and expert skills in SQL. You'll focus on building, testing, and maintaining data pipelines and ensuring data quality across our scalable Big Data platforms.


Key Responsibilities

  • Data Pipeline Development: Assist in the design, construction, and maintenance of robust ETL/ELT pipelines to integrate data from various sources into our data warehouse or data lake.
  • Data Transformation with Python: Write, optimize, and maintain production-grade Python scripts to clean, transform, aggregate, and process large volumes of data.
  • Database Interaction (SQL): Develop complex, high-performance SQL queries (DDL/DML) for data extraction, manipulation, and validation within relational and data warehousing environments.
  • Quality Assurance: Implement data quality checks and monitoring across pipelines, identifying discrepancies and ensuring the accuracy and reliability of data.
  • Collaboration: Work closely with Data Scientists, Data Analysts, and other Engineers to understand data requirements and translate business needs into technical data solutions.
  • Tooling & Automation: Utilize version control tools like Git and contribute to the automation of data workflows and recurring processes.
  • Documentation: Create and maintain technical documentation for data mappings, processes, and pipelines.


Required Skills and Qualifications

Core Technical Skills

Skill Area

Requirements

Programming

Strong proficiency in Python for data manipulation and scripting. Familiarity with standard Python data libraries (e.g., Pandas, NumPy).

Database

Expert-level proficiency in SQL (Structured Query Language). Experience writing complex joins, stored procedures, and performing performance tuning.

Big Data Concepts

Foundational understanding of Big Data architecture (Data Lakes, Data Warehouses) and distributed processing concepts (e.g., MapReduce).

ETL/ELT

Basic knowledge of ETL principles and data modeling (star schema, snowflake schema).

Version Control

Practical experience with Git (branching, merging, pull requests).


Preferred Qualifications (A Plus)

  • Experience with a distributed computing framework like Apache Spark (using PySpark).
  • Familiarity with cloud data services (AWS S3/Redshift, Azure Data Lake/Synapse, or Google BigQuery/Cloud Storage).
  • Exposure to workflow orchestration tools (Apache Airflow, Prefect, or Dagster).
  • Bachelor's degree in Computer Science, Engineering, Information Technology, or a related field.

Related Jobs

View all jobs

Junior Data Analyst

Junior Data Analyst

Junior Data Analyst

Junior Data Analyst

Junior Data Analyst

Junior Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.