Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

(INV) Senior Consultant, Data Engineer, AI&Data, UKI

EY
Belfast
2 days ago
Create job alert

At EY, we’re all in to shape your future with confidence.


We’ll help you succeed in a globally connected powerhouse of diverse teams and take your career wherever you want it to go.


Join EY and help to build a better working world.


Data Engineer Senior Consultant – Job Specification

Location: Belfast/ LondonDerry/Derry


Position Overview

We are seeking a highly skilled Data Engineer Senior Consultant with hands‑on experience designing, building, and optimizing data solutions that enable advanced analytics and AI‑driven business transformation. This role requires expertise in modern data engineering practices, cloud platforms, and the ability to deliver robust, scalable data pipelines for diverse business domains such as finance, supply chain, energy, and commercial operations.


Your Client Impact

  • Design, develop, and deploy end-to-end data pipelines for complex business problems, supporting analytics, modernising data infrastructure and AI/ML initiatives.
  • Design and implement data models, ETL/ELT workflows, and data integration solutions across structured and unstructured sources.
  • Collaborate with AI engineers, data scientists, and business analysts to deliver integrated solutions that unlock business value.
  • Ensure data quality, integrity, and governance throughout the data lifecycle.
  • Optimize data storage, retrieval, and processing for performance and scalability on cloud platforms (Azure, AWS, GCP, Databricks, Snowflake).
  • Translate business requirements into technical data engineering solutions, including architecture decisions and technology selection.
  • Contribute to proposals, technical assessments, and internal knowledge sharing.
  • Data preparation, feature engineering, and MLOps activities to collaborate with AI engineers, data scientists, and business analysts to deliver integrated solutions.

Essential Qualifications

  • Degree or equivalent certification in Computer Science, Data Engineering, Information Systems, Mathematics, or related quantitative field.

Essential Criteria

  • Proven experience building and maintaining large-scale data pipelines using tools such as Databricks, Azure Data Factory, Snowflake, or similar.
  • Strong programming skills in Python and SQL, with proficiency in data engineering libraries (pandas, PySpark, dbt).
  • Deep understanding of data modelling, ETL/ELT processes, and Lakehouse concepts.
  • Experience with data quality frameworks, data governance, and compliance requirements.
  • Familiarity with version control (Git), CI/CD pipelines, and workflow orchestration tools (Airflow, Prefect).

Soft Skills

  • Strong analytical and problem‑solving mindset with attention to detail.
  • Good team player with effective communication and storytelling with data and insights.
  • Consulting skills, including development of presentation decks and client‑facing documentation.

Preferred Criteria

  • Experience with real‑time data processing (Kafka, Kinesis, Azure Event Hub).
  • Knowledge of big data storage solutions (Delta Lake, Parquet, Avro).
  • Experience with data visualization tools (Power BI, Tableau, Looker).
  • Understanding of AI/ML concepts and collaboration with AI teams.

Preferred Qualifications

  • Certifications such as:

    • Databricks Certified Data Engineer Professional
    • Azure Data Engineer Associate
    • AWS Certified Data Analytics – Specialty
    • SnowPro Advanced: Data Engineer



EY | Building a better working world

EY is building a better working world by creating new value for clients, people, society and the planet, while building trust in capital markets.


Enabled by data, AI and advanced technology, EY teams help clients shape the future with confidence and develop answers for the most pressing issues of today and tomorrow.


EY teams work across a full spectrum of services in assurance, consulting, tax, strategy and transactions. Fueled by sector insights, a globally connected, multi‑disciplinary network and diverse ecosystem partners, EY teams can provide services in more than 150 countries and territories.


#J-18808-Ljbffr

Related Jobs

View all jobs

Project Manager - Data Analyst

Group Data Governance Manager

Global CRM Data Strategy Journey Planner

Data Engineer - ETL

Junior Quantitative Researcher

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.