Data Scientist

Ascend Consulting
London
1 day ago
Create job alert

Dta Scientist, AI, Python, LLM, React, UK, Remote to £80,000
A growing Data Analytics outfit are looking for a Data Scientist as they look to build robust platforms to deliver AI Data insights. They are looking for a Data Scientist who has experience with data heavy products, data science, AI and statistical modelling. You will also have some full stack capability in React or Nod or similar. The successful Data Scientist will be able to lead the engineering direction as they look to grow their team rapidly over the next 12 months.
Skills and Responsibilities
• Has strong technical depth and can think on their feet when solving complex problems
• Has experience with data-heavy products, charts/visualisations, and reporting
• Brings some background in data science or statistical modelling
• Is highly flexible, entrepreneurial, and excited by a big challenge
• Can eventually lead the engineering direction of the product as we grow
• Has interest or experience in AI/LLMs, training models, and applied ML
• Strong full-stack capability (React, Node.js or similar)
• Experience with data-heavy systems, charting libraries, reporting frameworks
• Strong exposure to data engineering or data science principles
• Understanding of LLMs, model integration, prompt engineering, or model training pipelines
• Ability to design and scale real-time data products
• Comfortable in a fast-moving startup environment, taking ownership and initiative
Candidates with experience at research/analytics companies or AI-driven SaaS platforms tend to be a good fit

Related Jobs

View all jobs

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Data Scientist - Measurement Specialist

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.