National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Graduate Data Scientist - Fraud

LinkedIn
Greater London
2 days ago
Create job alert

About the business:LexisNexis Risk Solutions is the essential partner in the assessment of risk. Within our Business Services vertical, we offer a multitude of solutions focused on helping businesses of all sizes drive higher revenue growth, maximize operational efficiencies, and improve customer experience. Our solutions help our customers solve difficult problems in the areas of Anti-Money Laundering/Counter Terrorist Financing, Identity Authentication & Verification, Fraud and Credit Risk mitigation and Customer Data Management. You can learn more about LexisNexis Risk at the link below,https://risk.lexisnexis.com


About the team:You will be part of a team who use global data from the largest real-time fraud detection platform to craft solutions for our enterprise customers.


About the role:Your experience with data analysis, statistical modelling, and machine learning will lead to immediate real-world impact in the form of lower customer friction, reduced fraud losses and as a result, increased customer profitability. You’ll leverage a real-time platform analysing billions of transactions per month for some of the largest companies operating in Financial Services, Insurance, e-Commerce, and On-Demand Services. These tools will allow you to attain a unique perspective of the Internet, and every persona connected to it. On top of driving innovation projects, you’ll be continually collaborating with internal product and engineering teams, customer-facing account teams, and external business leaders and risk managers. The comprehensive models you build will go head-to-head against some of the most motivated attackers in the world to protect billions in revenue.


Responsibilities:

  • Scoping, developing, and implementing machine learning or rule-based models following best practice, to banking model governance standards
  • Using your strong knowledge of SQL and Python plus quantitative skills to define features that capture evolving fraudster behaviours
  • Develop internal tools to streamline the model training pipeline and analytics workflows
  • Applying your curiosity and problem-solving skills to transform uncertainty into value-add opportunities
  • Using your strong attention to detail and ability to craft a story through data, delivering industry-leading presentations for external and executive audiences
  • Building an extensive knowledge of cybercrime – account takeover, scams, social engineering, Card Not Present (CNP) fraud, money laundering and mule fraud etc
  • Employing your multi-tasking and prioritisation skills to excel in a fast-paced environment with frequently changing priorities


Requirements:

  • Experience in a data science role, ideally within the fraud, risk, or payments domain
  • Proficiency in Python and SQL (BI tools such as SuperSet, Tableau or PowerBI is a bonus)
  • Hands-on experience in machine learning model development, evaluation, and production deployment, with familiarity in MLOps principles to build scalable and standardised workflows and implement effective ML monitoring systems
  • Proven ability to create polished presentations and effectively communicate insights to customers with attention to detail
  • Have extensive multi-tasking and prioritisation skills. Needs to excel in fast paced environment with frequently changing priorities


We know that your wellbeing and happiness are key to a long and successful career. These are some of the benefits we are delighted to offer:

  • Generous holiday allowance with the option to buy additional days
  • Health screening, eye care vouchers and private medical benefits
  • Wellbeing programs
  • Life assurance
  • Access to a competitive contributory pension scheme
  • Save As You Earn share option scheme
  • Travel Season ticket loan
  • Electric Vehicle Scheme
  • Optional Dental Insurance
  • Maternity, paternity and shared parental leave
  • Employee Assistance Programme
  • Access to emergency care for both the elderly and children
  • RECARES days, giving you time to support the charities and causes that matter to you
  • Access to employee resource groups with dedicated time to volunteer
  • Access to extensive learning and development resources
  • Access to employee discounts scheme via Perks at Work


Learn more about the LexisNexis Risk team and how we workhere

Related Jobs

View all jobs

Graduate Data Scientist

Graduate Data Scientist

Graduate Data Scientist

Graduate Data Scientist - Fraud

Graduate Data Analyst - Manchester

Data Scientist - Graduate

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs Skills Radar 2026: Emerging Tools, Languages & Platforms to Learn Now

The UK’s data science job market is evolving fast—from forecasting models and AI assistants to real-time decision systems. In 2026, data scientists aren’t just expected to build models—they’re responsible for shaping insights that fuel everything from patient care to predictive banking. Welcome to the Data Science Jobs Skills Radar 2026—your essential annual guide to the languages, tools, and platforms driving demand across the UK. Whether you’re entering the job market or reskilling mid-career, this roadmap helps you prioritise the skills that matter most right now.

How to Find Hidden Data Science Jobs in the UK Using Professional Bodies like the RSS, BCS & More

The data science job market in the UK is thriving—but also increasingly competitive. As organisations in finance, healthcare, retail, government, and tech accelerate digital transformation, the demand for data talent has soared. Yet many of the best data science jobs are never posted publicly. They’re shared behind closed doors—within professional networks, at invite-only events, or through member-only mailing lists and specialist interest groups. These “hidden” roles are often filled through referrals, collaborations, or direct outreach to trusted experts. In this guide, we’ll show you how to unlock these hidden opportunities by engaging with key UK professional bodies such as the Royal Statistical Society (RSS), BCS (The Chartered Institute for IT), and Turing Society, plus communities like PyData and AI UK. You’ll learn how to use directories, CPD events, and networks to move beyond job boards—and into roles where you’re approached, not just applying.

How to Get a Better Data Science Job After a Lay-Off or Redundancy

Redundancy can be tough to face, especially in a competitive field like data science. But it’s important to know: your experience, analytical thinking, and modelling skills are still in demand. Across sectors like healthcare, finance, e-commerce, government and AI startups, UK employers continue to seek data scientists who can deliver value through insight, prediction, and automation. This guide will walk you through how to bounce back from redundancy with purpose and clarity—whether you're a data analyst looking to step up, a mid-level data scientist, or a machine learning specialist seeking a better-aligned opportunity.