Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Fullstack Data Scientist (Lead)

Sequel
City of London
4 days ago
Create job alert
Location

London

Employment Type

Full time

Location Type

Hybrid

Department

Data

About Tilt 🛸

We’re building the next century of shopping, making it feel human, communal, and alive again. E-commerce has spent decades optimising for clicks, stripping away the trust, joy, and connection that once made shopping meaningful.

We’ve recently raised an $18M Series A from the world’s best investors to build the next era of commerce. Now, we’re hiring elite builders to make it happen

Your Mission 🫵

We are building the intelligence layer that powers every major decision at Tilt. As our Lead Full Stack Data Scientist, you will architect and own this system end to end, from data infrastructure and pipelines to modelling, experimentation, and analytics. You will build and lead the team responsible for turning Tilt’s data into high-leverage product, growth, and commercial insights.

This role is both strategic and deeply hands-on. You will define what data science means at Tilt, set the long‑term direction, and ship systems that unlock instant insight across the company. In one recent project, we cut the time to insight from days to minutes. You will deliver this level of impact at scale.

What You’ll Do 👷0 to 3 months
  • Map Tilt’s business model, data ecosystem, and analytical gaps

  • Define and begin executing the data science roadmap aligned with company priorities

  • Build high-impact analytics for Marketing, Creator, and Category teams that deliver immediate value

  • Establish data quality standards, governance, and best practices across all functions

  • Embed fast, scientific decision‑making into the company by partnering with senior leadership

3+ months
  • Own and evolve Tilt’s entire data science, modelling, and analytics strategy

  • Lead frameworks for marketing efficiency, attribution, and smart budget allocation

  • Design, build, and maintain predictive models that support category expansion, retention, creator performance, and growth

  • Develop and operationalise causal inference, experimentation, and incrementality testing systems

  • Establish a company‑wide culture of experimentation and rigorous measurement

  • Represent data science in leadership and board‑level discussions

Who You Are đź“‹
  • Exceptional analytical and technical ability with a track record of high‑impact work in full‑stack data science or analytics

  • Proven experience building and leading high‑performing data science teams

  • Deep expertise in experimentation, statistical modelling, causal inference, and translating complex outputs into clear strategy

  • Strong engineering ability across the data stack, comfortable owning systems end‑to‑end

  • High bias for action and speed, with excellent product and business intuition

  • Experience in fast‑paced, high‑autonomy startup environments, ideally from seed to Series B

  • First‑principles thinker with strong problem‑solving instincts

Nice to Have

  • Experience supporting marketing, growth, or commercial teams

Why Tilt đź’«
  • You’ll be joining a mission‑driven team backed by world‑class investors (TechCrunch)

  • You’ll own meaningful systems from day one, with real scope and autonomy

  • You’ll work alongside curious, kind, and wickedly smart teammates

  • You’ll help redefine how millions of people shop online

Curious what it’s like to work at Tilt? Start here.

Or just download the app on the UK App Store or UK Google Play and see for yourself.

Location: Hybrid (London, King’s Cross office)

Perks & Benefits âž•
  • 29 days off, plus UK bank holidays

  • Your birthday off, no questions asked

  • Share options to become a true stakeholder in our success.

  • 3% pension contribution from Month 2 (auto‑enrolment)

  • MacBook and tech budget to get you set up your way

  • Gym membership

  • Free Deliveroo if you’re working late

We welcome applicants from all backgrounds and experiences, and we’re committed to fostering an inclusive, diverse workplace.

If you don’t meet every single requirement in the job description, please don’t be put off from applying. We value potential and a willingness to learn over ticking every box — your unique perspective could be exactly what we’re looking for.

Let us know if you need any adjustments during the application process — we’re happy to help.


#J-18808-Ljbffr

Related Jobs

View all jobs

Fullstack Data Scientist (Lead)

Fullstack Data Scientist (Lead)

Senior Data Scientist

Lead Full-Stack Data Scientist — Shape Growth & Insight

Lead Full-Stack Data Scientist (Hybrid London) - Equity

Lead Full-Stack Data Scientist (Hybrid London) - Equity

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.