Finance Assistant

Worcester
1 month ago
Applications closed

Related Jobs

View all jobs

Accounts Assistant

Senior Management Accountant

Bookkeeper-Part-Time

Finance Analyst

French Speaking Finance Analyst

Data Engineering Lead - Finance and Master

We are seeking a finance assistant/data entry specialist to support the implementation of a new ERP system. The successful candidate will play a key role in migrating data from existing systems into the new ERP, ensuring accuracy, consistency, and completeness of all data. This is a critical position in the project, requiring a high level of focus and precision during the systems implementation process.

Key Responsibilities:
Data Migration: Enter and validate data from legacy systems into the new ERP system, ensuring accuracy, consistency, and completeness.

Data Cleansing: Review and clean existing data to identify and rectify any discrepancies or errors before migration into the new system.

Data Quality Assurance: Conduct thorough checks and validation of migrated data, identifying any gaps or issues, and working closely with the project team to resolve them.

System Testing: Assist in testing the new ERP system by entering test data, monitoring outputs, and reporting issues or errors encountered.

Documentation: Maintain accurate documentation of data entry procedures, including data mapping and transformation rules for future reference.

Collaboration: Work closely with IT teams, business analysts, and other stakeholders to ensure smooth integration of data into the ERP system.

Data Formatting: Format data according to the ERP system requirements and data standards.

Reporting: Generate reports from the new ERP system for analysis, ensuring the completeness and accuracy of all entered data.

Support: Provide ongoing support during the post-implementation phase, assisting with data-related queries and issues.

Experience in finance is essential and any experience in data entry, data migration, or working with ERP systems (particularly during implementations) is preferred.

This is a temporary role, ongoing for a few months and is based onsite in WR2 5 days a week

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.