Environmental Data Scientist/Hydrologist

Wallingford
2 days ago
Create job alert

Environmental Data Scientist / Hydrologist

Wallingford, UK (remote options considered)
£38,000 – £42,000

We are working with a fast-growing environmental consultancy that is seeking a Senior Environmental Data Scientist / Hydrologist to join its team in the Wallingford area. This position is ideal for someone who thrives in a collaborative scientific environment and wants to deepen their expertise in hydrological modelling, data analysis and environmental software development.

Role Overview

The successful candidate will join a multidisciplinary science and software team responsible for designing, improving and maintaining national hydrological modelling systems. These tools support key decisions relating to river behaviour, flood mitigation and long-term water management.

A major focus of the role will be on enhancing a widely used water-resource modelling platform, along with contributing to updates of national flood-estimation tools. The position also involves exploring ways machine learning can be integrated into existing hydrological methods to improve accuracy and expand capability.

Key Responsibilities

• Develop and refine hydrological modelling methods for a national water-resources platform
• Contribute to the enhancement of leading flood-estimation tools used across the UK
• Research and apply machine learning techniques to hydrological datasets
• Incorporate scientific findings into commercial software, including interface testing and usability improvements
• Work closely with regulators, end users and technical specialists to ensure tools remain accurate, compliant and user-friendly
  • Support ongoing scientific research and translate outcomes into practical solutions

Skills & Experience Required:

• A good degree (2:1 or above) in a numerate or environmental discipline such as hydrology, earth sciences or civil engineering; postgraduate study is welcome but not essential
• Strong programming capability in Python and/or R
• Experience designing or applying machine learning models to environmental or geospatial data
• Ability to process and analyse complex datasets such as spatial or time-series formats (e.g. NetCDF, ASCII)
• Strong communication skills, able to explain technical concepts to both specialists and non-specialists
 • Demonstrated knowledge or experience in hydrology, water-environment work or related environmental science

What the First Year Looks Like:

During the first 12 months, the new team member will:
• Build familiarity with the organisation’s hydrological modelling tools and software suite
• Develop Python modules and apply ML approaches to real hydrological challenges
• Gain an understanding of the UK’s regulatory framework for water and flood-risk activities
• Collaborate with partner research institutions and engage with national regulators
• Produce high-quality technical reports and documentation
 • Begin progressing toward professional chartership (e.g., CIWEM or equivalent)

As experience grows, they will have opportunities to:
• Contribute to long-term scientific and commercial development strategies
• Identify innovative opportunities for new products, capabilities or modelling approaches
• Lead elements of research and development projects
 • Support the preparation of client proposals

Benefits & Culture:
• Employee-ownership structure with tax-free profit-share bonuses
• Additional performance-related bonus opportunities
• Clear pay bands and transparent promotion pathways
• Share-option opportunities for senior grades (subject to tenure)
• Exceptional holiday allowance of over 40 days including buy/sell options
• Pension scheme with employer contributions starting at 5% and increasing with service
• Health-cash plan including virtual GP access, counselling support and routine healthcare cashback
• Cycle-to-Work scheme
• Annual volunteering day focused on environmental or educational projects
• Structured appraisal process with tailored development plans
• Up to five dedicated training days per year
• Financial support for membership of professional bodies
• Flexible working hours supported by robust IT provision
• Individual tech budget for computing equipment
 • Regular staff events, team days and social activities

If you are interested in this Senior Environmental Data Scientist / Hydrologist, please contact Callum via (url removed)

Related Jobs

View all jobs

Environmental Data Scientist / Hydrologist

Environmental Data Scientist / Hydrologist

Environmental Data Scientist / Hydrologist

Environmental Data Scientist / Hydrologist...

Environmental Data Scientist/Hydrologist

Environmental Data Scientist/Hydrologist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.