Environmental Data Scientist/Hydrologist

Wallingford
3 weeks ago
Create job alert

Environmental Data Scientist / Hydrologist

Wallingford, UK (remote options considered)
£38,000 – £42,000

We are working with a fast-growing environmental consultancy that is seeking a Senior Environmental Data Scientist / Hydrologist to join its team in the Wallingford area. This position is ideal for someone who thrives in a collaborative scientific environment and wants to deepen their expertise in hydrological modelling, data analysis and environmental software development.

Role Overview

The successful candidate will join a multidisciplinary science and software team responsible for designing, improving and maintaining national hydrological modelling systems. These tools support key decisions relating to river behaviour, flood mitigation and long-term water management.

A major focus of the role will be on enhancing a widely used water-resource modelling platform, along with contributing to updates of national flood-estimation tools. The position also involves exploring ways machine learning can be integrated into existing hydrological methods to improve accuracy and expand capability.

Key Responsibilities

• Develop and refine hydrological modelling methods for a national water-resources platform
• Contribute to the enhancement of leading flood-estimation tools used across the UK
• Research and apply machine learning techniques to hydrological datasets
• Incorporate scientific findings into commercial software, including interface testing and usability improvements
• Work closely with regulators, end users and technical specialists to ensure tools remain accurate, compliant and user-friendly
  • Support ongoing scientific research and translate outcomes into practical solutions

Skills & Experience Required:

• A good degree (2:1 or above) in a numerate or environmental discipline such as hydrology, earth sciences or civil engineering; postgraduate study is welcome but not essential
• Strong programming capability in Python and/or R
• Experience designing or applying machine learning models to environmental or geospatial data
• Ability to process and analyse complex datasets such as spatial or time-series formats (e.g. NetCDF, ASCII)
• Strong communication skills, able to explain technical concepts to both specialists and non-specialists
 • Demonstrated knowledge or experience in hydrology, water-environment work or related environmental science

What the First Year Looks Like:

During the first 12 months, the new team member will:
• Build familiarity with the organisation’s hydrological modelling tools and software suite
• Develop Python modules and apply ML approaches to real hydrological challenges
• Gain an understanding of the UK’s regulatory framework for water and flood-risk activities
• Collaborate with partner research institutions and engage with national regulators
• Produce high-quality technical reports and documentation
 • Begin progressing toward professional chartership (e.g., CIWEM or equivalent)

As experience grows, they will have opportunities to:
• Contribute to long-term scientific and commercial development strategies
• Identify innovative opportunities for new products, capabilities or modelling approaches
• Lead elements of research and development projects
 • Support the preparation of client proposals

Benefits & Culture:
• Employee-ownership structure with tax-free profit-share bonuses
• Additional performance-related bonus opportunities
• Clear pay bands and transparent promotion pathways
• Share-option opportunities for senior grades (subject to tenure)
• Exceptional holiday allowance of over 40 days including buy/sell options
• Pension scheme with employer contributions starting at 5% and increasing with service
• Health-cash plan including virtual GP access, counselling support and routine healthcare cashback
• Cycle-to-Work scheme
• Annual volunteering day focused on environmental or educational projects
• Structured appraisal process with tailored development plans
• Up to five dedicated training days per year
• Financial support for membership of professional bodies
• Flexible working hours supported by robust IT provision
• Individual tech budget for computing equipment
 • Regular staff events, team days and social activities

If you are interested in this Senior Environmental Data Scientist / Hydrologist, please contact Callum via (url removed)

Related Jobs

View all jobs

Environmental Data Scientist/Hydrologist

Environmental Data Scientist/Hydrologist

Environmental Data Scientist/Hydrologist...

Hydrologist/Senior Environmental Data Scientist

Senior Environmental Data Scientist & Hydrologist (Hybrid/Remote)

Senior Hydrology Data Scientist – ML & Flood Modelling

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.