Deep Learning Architect, AWS Generative AI Innovation Center

AWS EMEA SARL (UK Branch)
London
1 month ago
Applications closed

Related Jobs

View all jobs

EMEA Cloud Solution Architect (Basé à London)

Principal Software Architect

Ab Initio Data Integration Architect (Basé à London)

Principal Data Scientist - NLP

Applied AI, UK Startup Solutions Architect

Head of Product | London, UK (Basé à London)

The Generative AI Innovation Center at AWS helps AWS customers accelerate the use of Generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

As a Deep Learning Architect, you'll partner with technology and business teams to build solutions that surprise and delight our customers. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies.

We’re looking for Engineers and Architects capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.

AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services.

Key job responsibilities
- Collaborate with ML scientist and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges
- Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership
- Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and productionization paths for generative AI
- Create and deliver reusable technical assets that help to accelerate the adoption of generative AI on AWS platform
- Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder
- Provide customer and market feedback to Product and Engineering teams to help define product direction

About the team
GenAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a Data Science Manager in GenAIIC, you'll partner with technology and business teams to build new generative AI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems.

Diverse Experiences
AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.

Why AWS?
Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture
Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth
We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.

BASIC QUALIFICATIONS

- Bachelor’s degree in computer science, engineering, mathematics or equivalent
- Experience in design, implementation, or consulting in applications and infrastructures
- Experience architecting or deploying Cloud/Virtualization solutions in enterprise customers
- Proven knowledge of deep learning and experience hosting and deploying ML solutions (e.g., for training, tuning, and inferences)
- Scientific thinking and the ability to invent, a track record of thought leadership and contributions that have advanced the field

PREFERRED QUALIFICATIONS

- MSc degree in computer science, engineering, mathematics or equivalent
- Proven knowledge of Generative AI and hands-on experience of building applications with large foundation models
- Proven knowledge of AWS platform and tools
- Hands-on experience of building ML solutions on AWS
- Experience in professional software development

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

McKinsey & Company Data‑Science Jobs in 2025: Your Complete UK Guide to Turning Data into Impact

When CEOs need to unlock billion‑pound efficiencies or launch AI‑first products, they often call McKinsey & Company. What many graduates don’t realise is that behind every famous strategy deck sits a global network of data scientists, engineers and AI practitioners—unified under QuantumBlack, AI by McKinsey. From optimising Formula One pit stops to reducing NHS wait times, McKinsey’s analytics teams turn messy data into operational gold. With the launch of the McKinsey AI Studio in late 2024 and sustained demand for GenAI strategy, the firm is growing its UK analytics headcount faster than ever. The McKinsey careers portal lists 350+ open analytics roles worldwide, over 120 in the UK, spanning data science, machine‑learning engineering, data engineering, product management and AI consulting. Whether you love Python notebooks, Airflow DAGs, or white‑boarding an LLM governance roadmap for a FTSE 100 board, this guide details how to land a McKinsey data‑science job in 2025.

Data Science vs. Data Mining vs. Business Intelligence Jobs: Which Path Should You Choose?

Data Science has evolved into one of the most popular and transformative professions of the 21st century. Yet as the demand for data-related roles expands, other fields—such as Data Mining and Business Intelligence (BI)—are also thriving. With so many data-centric career options available, it can be challenging to determine where your skills and interests best align. If you’re browsing Data Science jobs on www.datascience-jobs.co.uk, you’ve no doubt seen numerous listings that mention machine learning, analytics, or business intelligence. But how does Data Science really differ from Data Mining or Business Intelligence? And which path should you follow? This article demystifies these three interrelated yet distinct fields. We’ll define the core aims of Data Science, Data Mining, and Business Intelligence, highlight where their responsibilities overlap, explore salary ranges, and provide real-world examples of each role in action. By the end, you’ll have a clearer sense of which profession could be your ideal fit—and how to position yourself for success in this ever-evolving data landscape.

UK Visa & Work Permits Explained: Your Essential Guide for International Data Science Talent

Data science has rapidly evolved into a driving force for businesses and organisations worldwide. In the United Kingdom, companies across sectors—including finance, retail, healthcare, tech start-ups, and government agencies—are turning to data-driven insights to boost competitiveness and innovation. Whether you specialise in statistical modelling, machine learning, or advanced analytics, data scientists are in high demand throughout the UK’s vibrant tech ecosystem. If you’re an international data scientist aiming to launch or grow your career in the UK, one essential part of the journey is navigating the country’s visa and work permit system. From understanding how to secure sponsorship as a Skilled Worker to exploring the Global Talent Visa for leading experts, this article will help you understand the most relevant routes, criteria, and practical steps for your move. Let’s delve into everything you need to know about working in data science in the UK as an international professional.