Data Scientist with Time Series

ST Global Tech LLC
Leeds
6 days ago
Create job alert
Python Data Developer with timeseries

Leeds, UK - Hybrid – 3 days at client office and 2 days remote


Duration: Minimum 1 yr.


Required Skills

9+ years’ experience required. Relevant experience on timeseries / data package.


Experience

  • Proficient Python Programming
  • Key skills: Functions, classes, and object-oriented programming, List comprehensions, generators, Error handling.
  • Working with virtual environments and package management (pip, venv).
  • Data Manipulation & Analysis (Pandas & NumPy)
  • Key libraries: pandas, numpy, (optional: polars)
  • Key skills: Data cleaning and preprocessing, handling missing values, grouping, merging, pivoting, aggregations, and SQL.
  • Software Engineering Best Practices
  • Key practices: Version control with Git, writing modular, reusable code, unit testing (e.g., with pytest), code documentation and docstrings, using linters and formatters.
  • Plotly Dash
  • Key skills: Customizing with Plotly Graph Objects for advanced interactivity.
  • Creating dashboards with Dash: Callbacks, Layouts (HTML & CSS integration), Components (Dropdowns, sliders, graphs, tables).
  • REST APIs: Fetching or sending data to backend services.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist / Software Engineer

Data Scientist, Envelop UK

Data Scientist

(Senior) Forecasting Data Scientist (m/f/d)

Senior Python Data Scientist: Time Series & Dashboards

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.