Data Scientist, Envelop UK

QxBranch
Bristol
3 weeks ago
Create job alert

Envelop Risk is a rapidly-growing underwriting agency combining world leaders in (re)insurance underwriting and artificial intelligence-based simulation modelling. The firm underwrites cyber reinsurance contracts and is building cyber insurance products that will be distributed globally. Envelop is seeking technical staff for a new office in Bristol, that will serve as the new global hub for its modelling and technology team.

Envelop Risk offers a flexible, equal-opportunity workplace with an engaged and talented team delivering high-quality projects on the cutting edge of technology. Occasional international travel for client workshops and technical networking will be required.

Envelop’s Mission

To create the world’s leading cyber risk underwriting agency, we combine state of the art analytics with unrivalled underwriting and client insight. We select and transfer risk in the most informed and efficient manner possible and utilize a range of innovative distribution and capacity channels to facilitate the optimum value chain for cyber risk transfer.

Job Description

Envelop is seeking a talented data scientist with a background in machine learning and in taking data science solutions through to production. The role will require interaction with clients and collaboration with Envelop’s passionate team of data scientists, software engineers and underwriters, shaping data analytics solutions to meet client needs.

Insurance and cyber security experience are not required, but either would be looked upon favourably.

Responsibilities
  • Prototype, develop, and deploy complex analytics models
  • Acquire, process, and model large, complex datasets
  • Work in an internationally distributed team, with schedule flexibility
  • Deliver high quality technical outcomes while adhering to cost and schedule constraints
  • Continue technical and professional development to ensure Envelop’s technology and its team remains on the cutting edge
Required skills
  • Proficiency in Python and common data science packages such as SciKit-Learn, NumPy and Pandas
  • Experience in all portions of the data analytics pipeline, including ingest, cleaning, feature extraction, modelling, statistical validation, and visualization / reporting
  • Competence in software development practices including writing and verifying maintainable code, version control, cloud-based development, and performance profiling and tuning
Desired skills
  • Expertise in one or more of: probabilistic modeling, natural language processing, explainable AI, uncertainty analysis, time series analysis
  • Strong data visualization and data "storytelling" skills
  • Analytics experience in finance, insurance, or cyber security
  • Proficiency in other analytics technologies, such as R, SQL, CUDA, Hadoop, Spark, and Redshift
  • Experience with Dataiku's Data Science Studio
Qualifications
  • Bachelor of Science or higher in engineering, science, or mathematics, with specializations related to computer science preferred
  • Minimum of 3 years relevant experience, including internships, part-time positions, and graduate level education
Additional Information

This role is committed to ensuring that all of its employees are legally eligible to be employed in the United States and refrains from discriminating against individuals on the basis of national origin or citizenship. Within three (3) days of being hired, the candidate must submit a Form I-9 and utilizes E-Verify to confirm employment eligibility.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Globally Renowned Retail Group)

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.