Data Scientist - Hybrid

TieTalent
Windsor
2 days ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist (Globally Renowned Retail Group)

Data Scientist / Software Engineer

Overview

Join to apply for the Data Scientist - Hybrid role at TieTalent.

Responsibilities
  • Deliver high-quality data science and analytics solutions, contributing to design, development, and product roadmaps.
  • Collaborate with clients and internal teams to gather requirements, analyse data, and validate solutions.
  • Develop and implement descriptive, predictive, and prescriptive analytics, integrating data from multiple sources.
  • Produce clear documentation, reports, and visualisations.
  • Provide technical input for proposals, solution scoping, and proofs-of-concept.
  • Attend occasional client meetings or events across the UK, Europe, and internationally.
Required Experience
  • Strong knowledge of data modelling, machine learning, and/or advanced data analytics.
  • Demonstrable track record of delivering data analytics projects as part of a team.
  • Hands-on experience with collaborative software development and version control (preferably Git).
  • Familiarity with Agile/SCRUM methodologies.
  • Exposure to pre-engagement activities such as project scoping, technical feasibility analysis, or prototype development.
  • Comfortable contributing to technical discussions and implementing solutions defined by project leads.
Desirable Experience
  • Strong Python expertise.
  • Experience with GNU/Linux environments.
  • Familiarity with key data science and ML frameworks (e.g., scikit-learn, PyTorch, TensorFlow, XGBoost, Hugging Face).
  • Experience in natural language processing, tabular data analysis, or computer vision.
  • SQL proficiency.
  • Exposure to containerisation (Docker, Kubernetes) and cloud-native architectures.
  • Experience with CI/CD, automated testing, and iterative product development.
  • Knowledge of graph databases and graph analysis.
Benefits
  • 35 days annual leave (including public holidays) plus up to 10 days unpaid leave.
  • Flexible working arrangements around core hours.
  • Private health insurance and pension scheme.
  • Contribution to gym membership.
  • Ongoing professional development support (courses, certifications, conferences).
  • Regular company outings, team celebrations, and knowledge-sharing sessions.
  • Monthly recognition of outstanding performance.
Additional Information

ALL APPLICANTS MUST BE FREE TO WORK IN THE UK.

Exposed Solutions is acting as an employment agency for this client. The advertisement does not discriminate and we welcome applications from any qualified persons.

Seniority level
  • Mid-Senior level
Employment type
  • Full-time
Job function
  • Engineering and Information Technology
Industries
  • Technology, Information and Internet


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.