Data Scientist Genomic Epidemiology - Pathogen

Ellison Institute of Technology
Oxford
23 hours ago
Create job alert

Led by a world-class faculty of scientists, technologists, policy makers, economists and entrepreneurs, the Ellison Institute of Technology aims to develop and deploy commercially sustainable solutions to solve some of humanity’s most enduring challenges. Our work is guided by four Humane Endeavours: Health, Medical Science & Generative Biology, Food Security & Sustainable Agriculture, Climate Change & Managing Atmospheric CO2 and Artificial Intelligence & Robotics.


Set for completion in 2027, the EIT Campus in Littlemore will include more than 300,000 sq ft of research laboratories, educational and gathering spaces. Fuelled by growing ambition and the strength of Oxford’s science ecosystem, EIT is now expanding its footprint to a 2 million sq ft Campus across the western part of The Oxford Science Park. Designed by Foster + Partners led by Lord Norman Foster, this will become a transformative workplace for up to 7,000 people, with autonomous laboratories, purpose-built laboratories including a plant sciences building and dynamic spaces to spark interdisciplinary collaboration.


The Pathogen Mission highlights EIT’s transformative approach, using Whole Genome Sequencing (WGS) and Oracle’s cloud technology to create a global pathogen metagenomics system. This initiative aims to improve diagnostics, provide early epidemic warnings, and guide treatments by profiling antimicrobial resistance. The goal is to deliver certified diagnostic tools for widespread use in labs, hospitals, and public health.


EIT Oxford fosters a culture of collaboration, innovation, and resilience, valuing diverse expertise to drive sustainable solutions to humanity’s enduring challenges.


We are seeking aData Scientist in Genomic Epidemiologyto support the scientific development and implementation of EIT Oxford's Pathogen Programme. Reporting to Head of Population Data Science, the role involves collaborating with internal teams and external partners to assess, develop methods for, and implement at scale, computational and statistical methods for analysing the genomic, phenotypic and epidemiological characteristics of a variety of pathogens in order to inform public health applications ranging from AMR monitoring to outbreak detection and vaccine deployment.


The postholder will carry out research, develop and evaluate high quality software for integration into the EIT Pathogen platform, present findings in peer-reviewed publications and at international forums, contribute to the design and development of large-scale data resources, and explore innovative uses of data to evaluate and improve public health policy and interventions. Ideal candidates will have expertise in high throughput WGS applications within infectious disease epidemiology and monitoring, a strong academic background, excellent skills in research software development, and experience of working with global partners to develop, evaluate and embed new capabilities for data-driven public health.


Key Responsibilities

  • In partnership with the EIT Data and AI team, establish and optimise best practice for managing population-scale genomic and phenotypic data, with appropriate metadata, for downstream analysis.
  • In partnership with the Product and Medical Teams, define use cases for data products and services that generate insights from population-level data on pathogen genotypic and phenotypic diversity for public health applications.
  • Carry out research and development to establish best-in-class analytics for population-scale data science to characterise, analyse and evaluate the potential impact of interventions for applications such as AMR monitoring, outbreak detection, vaccine deployment, community intervention and clinical trials.
  • Deliver high quality software to perform such applications, which can be integrated into the EIT Pathogena Platform by the Technology Team.
  • Present work at international meetings and publish in peer-reviewed journals
  • Work with external partners, where appropriate, to enable knowledge transfer and to support establishment of best practices for genomic and related data analysis using the products and services developed by EIT.

Qualifications & Experience

  • A strong track record of scientific and computational innovation in the field of population-scale infectious disease genomic epidemiology, with an emphasis on public health applications.
  • Up-to-date working knowledge of best practices in research software development and testing.
  • Experience of working with genomic data at a population scale, including the tools and technologies to manage sophisticated analyses.
  • Experience of statistical and/or machine learning methods to make epidemiological inferences from genomic data.
  • Experience of working with partner organisations, including academics, public health workers, and counterparts in partner organisations.

Desirable Knowledge, Skills and Experience

  • Direct experience of working with Oxford Nanopore sequencing technology.

Key Attributes
Scientific and Technical Expertise

  • Proven capability for delivering innovation within public health applications relating to the genomic analysis of infectious disease.
  • Experience in developing the computational tools and technologies to support high volume genomic data analysis for a wide range of users.

Strategic Vision and Leadership

  • Ability to identify opportunities for innovation which align public health needs with commercial objectives and feasibility.
  • Comfortable working within multidisciplinary teams, actively bridging scientific, computational and product expertise.

Collaborative Partnership Builder

  • Experience working with scientific and public health partners in endemic countries to establish and disseminate best practices.

Program Development and Execution

  • Experience of developing new ideas and proposals to develop and validate new tools and technologies.
  • Able to ensure projects are delivered on time and within budget in a delivery-focused setting.

Thought Leadership and Communication

  • Strong academic profile with peer-reviewed publications and a developing network within the genomics community.
  • Skilled at presenting complex ideas at international scientific conferences and contributing to global discourse in genomics.

Benefits

  • Enhanced holiday pay
  • Pension
  • Life Assurance
  • Income Protection
  • Private Medical Insurance
  • Hospital Cash Plan
  • Therapy Services
  • Perk Box
  • Electrical Car Scheme

Why work for EIT

At the Ellison Institute, we believe a collaborative, inclusive team is key to our success. We are building a supportive environment where creative risks are encouraged, and everyone feels heard. Valuing emotional intelligence, empathy, respect, and resilience, we encourage people to be curious and to have a shared commitment to excellence. Join us and make an impact!


Terms of Appointment

You must have the right to work permanently in the UK with a willingness to travel as necessary.


You will live in, or within easy commuting distance of, Oxford.


During peak periods, some longer hours may be required and some working across multiple time zones due to the global nature of the programme.


#J-18808-Ljbffr

Related Jobs

View all jobs

Pathogen Genomic Epidemiology Data Scientist

Lead Data Scientist - Drug Discovery

Lead Health Data Scientist — Statistical Genetics

Senior/Lead Health Data Scientist – Statistical Genetics

Data Engineer

Hybrid Bioinformatics Scientist: Genomics & Data Analytics

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.