Data Architect - Pathogen

Ellison Institute of Technology Oxford
Stoke-on-Trent
1 month ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect

Data Architect

1 week ago Be among the first 25 applicants


Get AI-powered advice on this job and more exclusive features.


Led by a world-class faculty of scientists, technologists, policy makers, economists and entrepreneurs, the Ellison Institute of Technology aims to develop and deploy commercially sustainable solutions to solve some of humanity's most enduring challenges. Our work is guided by four Humane Endeavours: Health, Medical Science & Generative Biology, Food Security & Sustainable Agriculture, Climate Change & Managing Atmospheric CO2 and Artificial Intelligence & Robotics.


Set for completion in 2027, the EIT Campus in Littlemore will include more than 300,000 sq ft of research laboratories, educational and gathering spaces. Fuelled by growing ambition and the strength of Oxford's science ecosystem, EIT is now expanding its footprint to a 2 million sq ft Campus across the western part of The Oxford Science Park. Designed by Foster + Partners led by Lord Norman Foster, this will become a transformative workplace for up to 7,000 people, with autonomous laboratories, purpose-built laboratories including a plant sciences building and dynamic spaces to spark interdisciplinary collaboration.


The Pathogen Mission highlights EIT's transformative approach, using Whole Genome Sequencing (WGS) and Oracle's cloud technology to create a global pathogen metagenomics system. This initiative aims to improve diagnostics, provide early epidemic warnings, and guide treatments by profiling antimicrobial resistance. The goal is to deliver certified diagnostic tools for widespread use in labs, hospitals, and public health.


EIT Oxford fosters a culture of collaboration, innovation, and resilience, valuing diverse expertise to drive sustainable solutions to humanity's enduring challenges.


We are currently recruiting for a Data Architect to support the EIT Pathogen Programme.


In this role, you will play a pivotal part in designing and implementing cutting-edge data architectures to support the pathogen mission. You'll collaborate closely with cross-functional teams to understand business requirements and translate them into robust data models and architectures.


As a Data Architect, you'll have the opportunity to shape the future of our data platform and collaborate with platform and product teams to deliver analytical and AI products to transform pathogen monitoring and diagnostics. You'll be responsible for defining data standards, data models and best practices to ensure the integrity, security, and accessibility of our data assets. Additionally, you'll play a key role in optimising data processes and workflows, driving efficiencies, and fostering a data-driven culture within the organisation.


Key Responsibilities

  • Understand and manage the data requirements by working with stakeholders to analyse requirements and identifying those of architectural significance
  • Formulating the data model and standards to be used by the data platform to support interoperability and federation to support pathogen monitoring and research
  • Communicating the data architecture to various stakeholder groups within EIT
  • Developing data architectures including different data flows, data lifecycle, data security, durability, as well as applying consistent documentation standards and architecture methods
  • Supporting developers and making sure they can realise the data architecture by a combination of mentoring and direct involvement
  • Responsible for producing architecture artifacts and presenting the work through architecture governance
  • Verifying implementations and ensuring the delivered systems is consistent with the agreed architecture and meets requirements
  • Defining architecture data standards are defined to ensure compliance. This may include Medical Device Accreditation (where relevant)
  • Ensuring that squads have available a set of standard patterns, guidance, and technical standards to help them deliver
  • Ensuring solutions are documented and assured through defined architecture governance processes

Essential Knowledge, Skills and Experience

  • Knowledge and experience of architecting and delivering modern data platform standards, tools and patterns including data lakes, lake houses, iceberg, data mesh
  • Experience of architecting, building, and delivering modern data platforms at scale
  • Familiar with TOGAF and other enterprise architecture frameworks
  • Experience and knowledge of data governance, data quality, and data cataloguing
  • Knowledge of master, metadata and reference data management
  • An understanding of Agile working practices and sprint based methodology
  • Capable of actively contributing to knowledge sharing

Desirable Knowledge, Skills and Experience

  • Knowledge of genomics
  • Experience with cloud-based data platforms preferably Oracle OCI or equivalent AWS and Azure services
  • Understanding of federation standards for genomics (ga4gh)
  • Understanding of data standards for pathogen data interoperability PHA4GE
  • Experience of architecting data standards for research environments
  • Experience with healthcare clinical data and associated standards OMOP , snowmed

Key Attributes

  • Collaboration
  • Ability to work in a fast-paced environment
  • Willingness to learn and cross train / upskill in new technology
  • Willingness to be hands on to explore new technology or develop POC's

Benefits

  • Salary: Competitive Salary on offer
  • Enhanced holiday pay
  • Pension
  • Life Assurance
  • Income Protection
  • Private Medical Insurance
  • Hospital Cash Plan
  • Therapy Services
  • Perk Box
  • Electrical Car Scheme

Terms of Appointment

You must have the right to work permanently in the UK with a willingness to travel as necessary.


You will live in, or within easy commuting distance of, Oxford.


During peak periods, some longer hours may be required and some working across multiple time zones due to the global nature of the programme.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.