Data Scientist, EMEA

Stripe
London
1 week ago
Create job alert

Join to apply for the Data Scientist, EMEA role at Stripe

Get AI-powered advice on this job and more exclusive features.

About Stripe Stripe is a financial infrastructure platform for businesses. Millions of companies - from the world’s largest enterprises to the most ambitious startups - use Stripe to accept payments, grow their revenue, and accelerate new business opportunities. Our mission is to increase the GDP of the internet, and we have a staggering amount of work ahead. That means you have an unprecedented opportunity to put the global economy within everyone’s reach while doing the most important work of your career.

About The Team Our Data Science team partners deeply with teams across Stripe to ensure that our users, our products, and our business have the models, data products, and insights needed to make decisions and grow responsibly. We’re looking for data scientists with a passion for analyzing data, building machine learning and statistical models, and running experiments to drive impact. Our work is broad and varied, influencing how our products work (e.g. understanding user needs, preventing fraud, or optimizing charge flows), how our business works (forecasting key outcomes, managing liquidity, quantifying risk exposure), how our go-to-market motions operate (designing growth experiments, optimizing marketing investments, refining sales processes, and estimating causal effects), and everything in between. We have a variety of Data Science roles and teams across Stripe and will seek to align you to the most relevant team based on your background.

What you'll do

We’re looking for a Data Scientist to partner with the Product, Finance, Payments, Security, Risk, Growth and Go-to-Market teams. You’ll work closely with a specific part of the business, playing a crucial role in optimizing our systems and leveraging data to make strategic business decisions. As a Data Scientist at Stripe, it’s our mission to ensure that the company strategy, products, and user interactions make smart use of our rich data, using techniques like machine learning, statistical modeling, causal inference, optimization, experimentation, and all forms of analytics.

Who you are

We’re looking for someone who meets the minimum requirements to be considered for the role. If you meet these requirements, you are encouraged to apply. The preferred qualifications are a bonus, not a requirement.

Minimum Requirements
  • 3-8+ years of data science/quantitative modeling experience
  • Proficiency in SQL and a computing language such as Python or R
  • Strong knowledge and hands-on experience in several of the following areas: machine learning, statistics, optimization, product analytics, causal inference, and/or experimentation
  • Experience in working with cross-functional teams to deliver results
  • Ability to communicate results clearly and a focus on driving impact
  • A demonstrated ability to manage and deliver on multiple projects with a high attention to detail
  • Solid business acumen and experience in synthesizing complex analyses into actionable recommendations
  • A builder's mindset with a willingness to question assumptions and conventional wisdom
Preferred Qualifications
  • Experience deploying models in production and adjusting model thresholds to improve performance
  • Experience designing, running, and analyzing complex experiments or leveraging causal inference designs
  • Experience with distributed tools such as Spark, Hadoop, etc.
  • A PhD or MS in a quantitative field (e.g., Statistics, Engineering, Mathematics, Economics, Quantitative Finance, Sciences, Operations Research)
In-office expectations

Office-assigned Stripe locations are expected to spend at least 50% of the time in a given month in their local office or with users. This may vary depending on role, team and location. For example, teams in Bucharest, Romania may have higher in-office requirements, and Stripe roles in other locations may differ. This approach helps balance in-person collaboration with flexibility where possible.

Pay and benefits

The annual salary range for this role in the primary location is £99,200 - £148,800. This range may change if you are hired in another location. The salary range may be inclusive of several career levels at Stripe and will be narrowed during the interview process based on experience, qualifications, and location. Benefits and details about compensation include: equity, company bonus or sales commissions/bonuses; retirement plans; health benefits; and wellness stipends. Specifics will be discussed during the interview process.

Seniority level
  • Mid-Senior level
Employment type
  • Full-time
Job function
  • Engineering and Information Technology
Industries
  • Software Development
  • Financial Services
  • Technology, Information and Internet


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist, EMEA

Senior Data Scientist, GenAI & Client Solutions

Sports Data Scientist

Data Scientist

EMEA Data Scientist: ML, Experiments & Impact

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.