Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist, AWS Industries

Amazon
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist, AWS Industries

Data Scientist, AWS Industries

Data Scientist, AWS Industries

Senior Delivery Consultant - Data Scientist AI/ML, AWS Professional Services

Delivery Consultant - Data Scientist AI/ML, AWS Professional Services

Data Scientist

DESCRIPTION

Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently.

You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems.

Key job responsibilities
- Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges
- Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production
- Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder
- Provide customer and market feedback to Product and Engineering teams to help define product direction

About the team
Diverse Experiences
Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn't followed a traditional path, or includes alternative experiences, don't let it stop you from applying.

Why AWS
Amazon Web Services (AWS) is the world's most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating - that's why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there's nothing we can't achieve in the cloud.

Inclusive Team Culture
Here at AWS, it's in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship and Career Growth
We're continuously raising our performance bar as we strive to become Earth's Best Employer. That's why you'll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

BASIC QUALIFICATIONS

- 2+ years of data scientist experience and 3+ years of data querying languages (e.g. SQL), scripting languages (e.g. Python) or statistical/mathematical software (e.g. R, SAS, Matlab, etc.) experience
- 3+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
- Experience applying theoretical models in an applied environment
- Bachelor's degree in a quantitative field such as statistics, mathematics, data science, business analytics, economics, finance, engineering, or computer science

PREFERRED QUALIFICATIONS

- PhD in a quantitative field such as statistics, mathematics, data science, business analytics, economics, finance, engineering, or computer science
- 5+ years of machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience
- Hands on experience with deep learning (e.g., CNN, RNN, LSTM, Transformer)
- Prior experience in training and fine-tuning of Large Language Models (LLMs) and knowledge of AWS platform and tools

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult our Privacy Notice (https://www.amazon.jobs/en/privacy_page) to know more about how we collect, use and transfer the personal data of our candidates.

Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you're applying in isn't listed, please contact your Recruiting Partner.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.

Top 10 Skills in Data Science According to LinkedIn & Indeed Job Postings

Data science isn’t just a buzzword — it’s the engine powering innovation in sectors across the UK, from finance and healthcare to retail and public policy. As organisations strive to turn data into insight and action, the need for well-rounded data scientists is surging. But what precise skills are employers demanding right now? Drawing on trends seen in LinkedIn and Indeed job ads, this article reveals the Top 10 data science skills sought by UK employers in 2025. You’ll get guidance on showcasing these in your CV, acing interviews, and building proof of your capabilities.

The Future of Data Science Jobs: Careers That Don’t Exist Yet

Data science has rapidly evolved into one of the most important disciplines of the 21st century. Once a niche field combining elements of statistics and computer science, it is now at the heart of decision-making across industries. Businesses, governments, and charities rely on data scientists to uncover insights, forecast trends, and build predictive models that shape strategy. In the UK, data science has become central to economic growth. From the NHS using data to improve patient outcomes to financial institutions modelling risk, the applications are endless. The UK’s thriving tech hubs in London, Cambridge, and Manchester are creating high demand for data talent, with salaries often outpacing other technology roles. Yet despite its current importance, data science is still in its infancy. Advances in artificial intelligence, quantum computing, automation, and ethics will transform what data scientists do. Many of the most vital data science jobs of the next two decades don’t exist yet. This article explores why new careers are emerging, the roles likely to appear, how current jobs will evolve, why the UK is well positioned, and how professionals can prepare now.