Data Scientist

CGI
Newcastle upon Tyne
3 weeks ago
Create job alert
Data Scientist (Energy)

Join to apply for the Data Scientist role at CGI.


Position Description


Data Scientist (Energy) drives the development and delivery of cutting‑edge solutions that strengthen the performance and resilience of electricity networks. Operating at the intersection of engineering, data science, and applied research, the role focuses on identifying operational challenges in the energy sector and transforming emerging technologies into practical, real‑world applications.


This position works collaboratively with Distribution Network Operators (DNOs), universities, research partners, and internal teams to explore innovation opportunities and co‑develop impactful solutions. The engineer contributes technical expertise to data‑driven initiatives, shaping models, algorithms, and analytical approaches that support decision‑making and innovation outcomes. They play a hands‑on role throughout the lifecycle of innovation projects, from early idea generation and feasibility assessment through to prototyping, testing, and deployment.


Strong communication and collaboration skills are essential, as the role interfaces with engineering, product, consulting, and business stakeholders to design and refine technical solutions that meet sector needs. The ideal candidate brings deep knowledge of energy systems, experience with AI/ML technologies, and strong programming capabilities.


Qualifications & Experience

  • Experience within the energy sector, ideally focused on electricity networks or smart grids.
  • Experience applying AI/ML technologies in engineering or operational settings.
  • Strong Python programming skills and familiarity with data analysis, machine learning, or simulation frameworks.
  • Ability to collaborate effectively in multidisciplinary teams and explain complex technical concepts to diverse audiences.

Key Duties & Responsibilities

  • Work closely with DNOs to understand operational challenges, explore innovation opportunities, and co‑develop solutions that enhance network performance and resilience.
  • Partner with universities and research institutions to translate emerging technologies and scientific advancements into practical, real‑world applications.
  • Contribute technical expertise to data‑driven projects, helping shape models, algorithms, and analytical approaches that drive innovation outcomes.
  • Communicate effectively with engineering, product, consulting, and business teams to design, refine, and deliver technical solutions.
  • Support the full lifecycle of innovation projects, from idea generation and feasibility analysis to prototyping, testing, and deployment.

Required Qualifications to Be Successful

  • Strong experience in data science or AI applied within the energy sector.
  • Ability to collaborate across disciplines and communicate complex ideas clearly.
  • Comfortable applying advanced analytics in operational environments.
  • Motivated to turn insight into action.

About CGI

Life at CGI is rooted in ownership, teamwork, respect and belonging. You are invited to be an owner from day 1 as we work together to bring our Dream to life. That’s why we call ourselves CGI Partners rather than employees. We benefit from our collective success and actively shape our company’s strategy and direction.


Your work creates value. You’ll develop innovative solutions and build relationships with teammates and clients while accessing global capabilities to scale your ideas, embrace new opportunities, and benefit from expansive industry and technology expertise.


You’ll shape your career by joining a company built to grow and last. You’ll be supported by leaders who care about your health and well‑being and provide you with opportunities to deepen your skills and broaden your horizons.


Come join our team — one of the largest IT and business consulting services firms in the world.


Seniority level

  • Entry level

Employment type

  • Full‑time

Job function

  • Engineering and Information Technology

Industries

  • IT Services and IT Consulting


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Consumer Lending Data Scientist

Data Scientist - Imaging - Remote - Outside IR35

Data Scientist (Predictive Modelling) – NHS

Data Scientist - New

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.