Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Scientist

bet365 Group
Stoke-on-Trent
2 days ago
Create job alert

As a Data Scientist, you will be responsible for developing machine learning solutions and performing statistical analysis to inform strategic, data-driven business decisions and initiatives.

Full-time

We are seeking a talented and motivated Data Scientist to join our Data Analytics team. The department is responsible for monitoring, analysing, and optimising key performance indicators across our range of Sports and Gaming products.

In this role, you will be instrumental in extracting valuable insights from vast datasets, developing predictive models, and contributing to data-driven decision-making across various business functions. You will work collaboratively with stakeholders from areas such as Fraud, Responsible Gambling, Trading and Branding to identify opportunities, solve complex problems, and build robust data solutions.

This is an exciting opportunity to apply cutting‑edge data science techniques in a fast‑paced, high‑volume, and globally recognised industry, utilising a modern and powerful tech stack.

This role is eligible for inclusion in the Company’s hybrid working from home policy.

Preferred Skills and Experience
  • Excellent analytical, problem‑solving, and critical thinking skills.
  • PhD degree in Computer Science, Statistics, Mathematics, or a related quantitative field.
  • Experience using core machine learning techniques, such as regressions, classification, clustering and deep learning.
  • Strong programming skills in languages such as Python, R, SQL.
  • Familiar with data science libraries and frameworks.
  • Detailed understanding of data mining, data warehousing, and data visualisation techniques.
  • Knowledge of Artificial Intelligence and it’s use within data science.
  • Strong communication skills with both technical and non‑technical audiences.
  • Knowledge of cloud computing, distributed systems, and big data technologies would be advantageous.
What you will be doing
  • Sourcing, cleaning, and validating diverse datasets from various internal and external sources.
  • Conducting in‑depth exploratory data analysis to uncover hidden patterns, identify trends, and generate actionable insights that inform strategic business decisions.
  • Developing and deploying robust statistical and machine learning models to address complex business challenges and drive innovative solutions.
  • Designing, implementing, and analysing A/B tests and other controlled experiments to measure the impact of new features, strategies, or models.
  • Contributing to the development and maintenance of scalable data science infrastructure.
  • Partnering closely with stakeholders to understand key business goals, and translate them into effective, data‑driven solutions.
  • Communicating complex findings and insights to technical and non‑technical audiences through visualisations, reports, and presentations.
  • Researching and championing innovative data science techniques, tools, and methodologies.
  • Fostering a culture of continuous learning and innovation within the wider Data Analytics team.
Bonus
  • Eye care and Flu Vaccinations
  • Life Assurance
Life at bet365

We are a unique global operator with passion and drive to be the best in the industry. Our values form the foundation of culture and shape the unique way that we work. People are our superpower and we support you to be the best you can be.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.