Data Scientist

Exponential Science Ltd
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist

Data Scientist (Predictive Modelling) – NHS

Data Scientist - Measurement Specialist

Data Scientist, United Kingdom - BCG X

Data Scientist, United Kingdom - BCG X

Data Scientist

Exponential Science is a foundation led by visionary founders Dr. Paolo Tasca and Nikhil Vadgama, who have advanced emerging technologies through education, research, and innovation. Recognising the power of the convergence of technologies such as blockchain, AI, and IoT to tackle complex multidisciplinary challenges, they founded Exponential Science as a natural evolution of their long-standing work, aiming to strive towards a more inclusive and innovative future for all.

Role and responsibilities

Exponential Science is looking fordata scientistwho can:

  • Gather, review and summarise academic literature related to the research topic of interest
  • Develop methodologies for creating scientific measures across the cryptocurrency and blockchain ecosystem
  • Collect and process data and information related to the research topic of interest
  • Write blog posts on research studies conducted by members from the Foundation
  • Perform peer review and draft reviewer’s report
  • Participate in research seminars
  • Participate in research projects focusing on quantitative indicators among cryptocurrency communities and other DLT related subjects
  • Develop ML/NLP methods to be used to extract and process information in the context of DLT
  • Develop code, tools, and methodologies with regards to the cryptocurrency related projects

Skill requirements

The ideal candidates are expected to have the following qualities:

  • Prior research and development experience
  • Good comprehension and abstraction skills
  • Grit and persistence
  • Reliability
  • Knowledge of statistics, time series analysis, and network theory is beneficial
  • Genuine interest in research on DLT and experience working with Big Data
  • Experience with AWS (desirable)

The position is suitable for candidates looking to get more experience in the field of research and development of innovative methods in deep tech. The ideal candidate is characterised by a strong knowledge of and passion for the blockchain and technology industry.


Location: London, England / Hybrid

Exponential Science is an equal opportunity employer.

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.