Data Science Placement Programme

Leeds
2 weeks ago
Applications closed

Related Jobs

View all jobs

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Science Placement Programme

Data Scientist Placement Programme - No Experience Required

Our training will help you kick-start a new career as a Data Scientist.

We are recruiting for companies who are looking to employ our Data Science Traineeship graduates to keep up with their growth. The best part is you will not need any previous experience as full training will be provided. You will also have the reassurance of a job guarantee within 20 miles of your location upon completion.

Whether you are working full time, part-time or unemployed, this package has the flexibility to be completed at a pace that suits you.

The traineeship is completed in 4 easy steps, you can be placed into your first role in as little as 6-12 months:

Step 1 - Full Data Science Career Training

You will begin your data science journey by studying a selection of industry-recognized courses that will take you from beginner level all the way through to being qualified to work in a junior Data Scientist role. Through the interactive courses, you will gain knowledge in Python, R, Machine Learning, AI, and much more. You will also complete mini projects to gain practical experience and test your skills while you study.

This step will fully prepare you for the professional projects that you will undertake in step 4 of this process.

At the end of this step, you will complete a short online multiple-choice exam to showcase your understanding of the courses before moving on to step 2.

Step 2 - CompTIA Data+

CompTIA Data+ is an early-career data analytics certification for professionals tasked with developing and promoting data-driven business decision-making. It teaches Data Mining, Visualization, Data Governance & Data Analytics. In any industry, gaining official certifications is very important in the recruitment process. Therefore, this globally recognized certification will enhance your CV and make you stand out from the crowd.

Step 3 - Official Exam

The CompTIA Data+ exam will certify that you have knowledge and skills required to transform business requirements in support of data-driven decisions through mining and manipulating data, applying basic statistical methods, and analysing complex datasets while adhering to governance and quality standards. The exam is 90 minutes long and can be sat either in your local testing centre or online.

Step 4 - Practical Projects

Now that you have completed your theory training and official exams, you will be assigned 2 practical projects by your tutor. The projects are the most important part of the traineeship as it will showcase to employers that you have skills required to work in a data science role. The projects will use real world scenarios where you be utilising all of the skill that you have learned.

Whilst you are progressing through the projects, you will have the ongoing support from your personal tutor. Once both projects have been completed and given the final sign off, you will have completed the traineeship and will be ready to move onto the recruitment stage.

Your Data Science Role

Once you have completed all of the mandatory training, which includes the online courses, practical projects and building your own portfolio, we will place you into a Data Scientist role, where you will be guaranteed a great starting salary. We have partnered with a number of large organisations strategically located throughout the UK, providing a nationwide reach of jobs for our candidates.

At a one off cost of £1495, or a deposit of £212 followed by 10 interest free monthly instalments of £148, this represents a great opportunity to start a rewarding career in IT and have a real career ladder to start climbing. If you are not offered a role at the end of the training we will refund 100% of your course fees.

Read through the information? Passionate about starting a career in data science? Apply now and one of our friendly advisors will be in touch.

‘Please note that this is a training course and fees apply

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.

Data Science Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Data science has become one of the most sought‑after fields in technology, leveraging mathematics, statistics, machine learning, and programming to derive valuable insights from data. Organisations across every sector—finance, healthcare, retail, government—rely on data scientists to build predictive models, understand patterns, and shape strategy with data‑driven decisions. If you’re gearing up for a data science interview, expect a well‑rounded evaluation. Beyond statistics and algorithms, many roles also require data wrangling, visualisation, software engineering, and communication skills. Interviewers want to see if you can slice and dice messy datasets, design experiments, and scale ML models to production. In this guide, we’ll explore 30 real coding & system‑design questions commonly posed in data science interviews. You’ll find challenges ranging from algorithmic coding and statistical puzzle‑solving to the architectural side of building data science platforms in real‑world settings. By practising with these questions, you’ll gain the confidence and clarity needed to stand out among competitive candidates. And if you’re actively seeking data science opportunities in the UK, be sure to visit www.datascience-jobs.co.uk. It’s a comprehensive hub featuring junior, mid‑level, and senior data science vacancies—spanning start‑ups to FTSE 100 companies. Let’s dive into what you need to know.

Negotiating Your Data Science Job Offer: Equity, Bonuses & Perks Explained

Data science has rapidly evolved from a niche specialty to a cornerstone of strategic decision-making in virtually every industry—from finance and healthcare to retail, entertainment, and AI research. As a mid‑senior data scientist, you’re not just running predictive models or generating dashboards; you’re shaping business strategy, product innovation, and customer experiences. This level of influence is why employers are increasingly offering compensation packages that go beyond a baseline salary. Yet, many professionals still tend to focus almost exclusively on base pay when negotiating a new role. This can be a costly oversight. Companies vying for data science talent—especially in the UK, where demand often outstrips supply—routinely offer equity, bonuses, flexible work options, and professional development funds in addition to salary. Recognising these opportunities and effectively negotiating them can have a substantial impact on your total earnings and long-term career satisfaction. This guide explores every facet of negotiating a data science job offer—from understanding equity structures and bonus schemes to weighing crucial perks like remote work and ongoing skill development. By the end, you’ll be well-equipped to secure a holistic package aligned with your market value, your life goals, and the tremendous impact you bring to any organisation.