Data Ops Engineer

Sofia
3 weeks ago
Create job alert

Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Hybrid in Sofia
£85-90,000 
Our client is looking for a UX/UI Developer to join a top-tier, well-established FinTech firm specialising in SaaS products that deliver real-time market data and pricing, comparable with industry giants like Bloomberg and Reuters. It has more than 600 employees spread across global locations in the UK, US, China, India, Singapore, Brazil, Belgium, Finland and beyond.
 
We are looking for an experienced Data Ops Engineer to lead the implementation of best practices in DataOps and optimise our client’s Snowflake platform. You will play a key role in managing data resilience, performance, and security while ensuring efficient user and role management.
 
You will also support data orchestration using Dagster (or similar tools like Airflow) and enhance integration with Qlik for operational analytics. This role is crucial in modernising their data infrastructure and ensuring high availability, reliability, and integrity of data platforms.
 
This is a fantastic opportunity to drive real change, collaborate with teams across Data, Engineering, and Cyber, and help shape their next-generation data architecture.
 
Key skills:

DataOps best practices
Snowflake, including performance tuning, governance, and user/role management
Dagster, Airflow, or Python-based orchestration tools
Qlik for data visualisation and analytics
Experience with data backup, restore, and integrity management
Proficiency in databases such as Cosmos DB, MySQL, and SQL Server
RBAC and user management using Azure Active Directory (AD)
Monitoring and observability tools (e.g., Grafana)
Scripting and automation with Bash, PowerShell, and Linux administration
Strong problem-solving and collaboration skills 
Nice to have skills:

Cloud deployment experience (Azure preferred, but AWS or GCP acceptable)
Experience with data pipelines and streaming data technologies
Kubernetes, Docker, and containerised data platforms
Familiarity with SQL Managed Instances for data system administration
Understanding of Azure cybersecurity best practices
Experience with Terraform, GitHub, and infrastructure as code
CI/CD experience with Azure DevOps or similar tools 
Projects & Responsibilities:

Optimise and manage Snowflake for performance, resilience, and security
Develop and implement DataOps best practices to enhance efficiency
Support data orchestration with Dagster (or similar tools)
Ensure data integrity and recoverability, implementing strong backup and restore processes
Monitor and troubleshoot data platforms, using tools like Grafana
Collaborate across teams (Data, Engineering, Cyber) to drive operational improvements 
Benefits:

Highly flexible hybrid working
Option to work remotely from anywhere in the world during August
25 days holiday, 3 extra days at Christmas, 2 volunteering days
Pension contribution
Medical insurance
Life insurance
Virtual GP service
Health cash plan 
If you are excited by the prospect of this role, please get in touch quickly as our client is looking to move quickly!
Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Related Jobs

View all jobs

Data Ops Engineer

Onboarding and Operations Manager

Sales Operations Manager

AI Technical Consultant - Remote

Events Coordinator

Supply Chain Data Analyst CGT

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs in the Public Sector: Exploring Opportunities Across GDS, NHS, MOD, and More

Data science has emerged as one of the most influential fields in the 21st century, transforming how organisations make decisions, improve services, and solve complex problems. Nowhere is this impact more visible than in the UK public sector. From the Government Digital Service (GDS) to the National Health Service (NHS) and the Ministry of Defence (MOD), government departments and agencies handle vast amounts of data daily to support the well-being and security of citizens. For data enthusiasts looking to make a meaningful contribution, data science jobs in the public sector can offer rewarding roles that blend innovation, large-scale impact, and societal benefit. In this comprehensive guide, we’ll explore why data science is so pivotal to government, the roles you might find, the skills needed, salary expectations, and tips on how to succeed in a public sector data science career.

Contract vs Permanent Data Science Jobs: Which Pays Better in 2025?

Data science sits at the intersection of statistics, machine learning, and domain expertise, driving crucial business decisions in almost every sector. As UK organisations leverage AI for predictive analytics, customer insights, and automation, data scientists have become some of the most in-demand professionals in the tech job market. By 2025, data scientists with expertise in deep learning, natural language processing (NLP), and MLOps are commanding top-tier compensation packages. However, deciding whether to become a day‑rate contractor, a fixed-term contract (FTC) employee, or a permanent member of an organisation can be challenging. Each path offers a unique blend of earning potential, career progression, and work–life balance. This guide will walk you through the UK data science job market in 2025, examine the differences between these three employment models, present sample take‑home pay scenarios, and offer strategic considerations to help you determine the best fit for your career.

Data Science Jobs for Non‑Technical Professionals: Where Do You Fit In?

Beyond Jupyter Notebooks Ask most people what a data‑science career looks like and they’ll picture Python wizards optimising XGBoost hyper‑parameters. The truth? Britain’s data‑driven firms need storytellers, strategists, ethicists and project leaders every bit as much as they need statisticians. The Open Data Institute’s UK Data Skills Gap 2024 places demand for non‑technical data talent at 42 % of all data‑science vacancies—roles focused on turning model outputs into business value and trustworthy decisions. This guide highlights the fastest‑growing non‑coding roles, the transferable skills many professionals already have, and a 90‑day action plan to land a data‑science job—no pandas required.