Data Ops Engineer

Moss Nook
3 weeks ago
Create job alert

Manchester (Hybrid working model, 2 days a week office based, 3 days remote)

Competitive Salary plus performance related bonus

Role Overview:

In this pivotal role, you will utilize your engineering expertise to streamline data processes, ensuring that our data is managed effectively, efficiently, and reliably across platforms. Your contributions will directly enhance our advanced analytics capabilities, promoting faster insights, and driving innovation in data practices. You’ll work closely with teams across the organization, creating agile and scalable solutions that directly influence our data science and analytics goals.

What You’ll Be Doing:

  1. Data Pipeline Development:

  • Design and implement complex ETL processes to extract, transform, and load data efficiently from diverse sources.

  • Develop real-time data processing pipelines using Apache Kafka or cloud-native streaming technologies.

  • Optimize batch processing workflows using distributed frameworks like Apache Spark and Apache Flink.

  1. Infrastructure Automation:

  • Implement Infrastructure as Code (IaC) to provision, configure, and manage cloud resources using Terraform, Ansible, and more.

  • Leverage cloud-native services (AWS, Azure) to enhance DataOps practices and reduce manual effort.

  1. Continuous Integration and Deployment (CI/CD):

  • Develop automated testing for data pipelines, validating business logic and data quality.

  • Orchestrate CI/CD pipelines with tools such as Jenkins, GitLab CI/CD, or Apache Airflow for data engineering workflows.

  1. Monitoring and Alerting:

  • Implement real-time monitoring with tools like Prometheus and Grafana to track pipeline health and performance.

  • Set up anomaly detection and alerting to proactively address issues in data latency and pipeline failures.

  1. DevOps Collaboration:

  • Collaborate cross-functionally with DevOps, data engineers, and business teams to promote DataOps best practices.

  • Engage in agile methodologies, including Scrum or Kanban, to prioritize tasks and drive continuous improvement.

  1. Performance Optimization:

  • Optimize SQL queries and distributed computing jobs for better performance.

  • Manage and optimize cloud resources to improve cost-efficiency and performance.

  1. Continuous Improvement:

  • Stay up-to-date with industry trends and enhance your skills through certifications and conferences.

  • Suggest and implement process improvements to streamline DataOps workflows and enhance productivity.

    What Are We Looking For?

  • Experience: Proficiency with database technologies (SQL Server, Oracle, MySQL, PostgreSQL).

  • Technical Skills: Expertise in data pipeline development, cloud platforms (AWS, Azure, Google Cloud), and DevOps practices.

  • Programming: Strong scripting skills in Python, Bash, or PowerShell.

  • Collaboration: Ability to work with cross-functional teams to design and deliver data solutions.

  • Communication: Excellent skills to translate complex technical concepts to non-technical stakeholders.

  • Problem-Solving: Strong troubleshooting and optimization capabilities for data systems and infrastructure.

    Desirable Skills & Experience:

  • Education: University degree or equivalent experience in a STEM field.

  • Industry Experience: Experience working in a regulated industry is a plus.

    About the DCC:

    At the DCC, we believe in making Britain more connected, so we can all lead smarter, greener lives. That desire to make a difference is what drives us every day and it wouldn’t be possible without our people. Each person at the DCC brings a special kind of power to the business, and if you join us, we’ll give you the means to unleash yours. Here, we depend on each other and hold each other accountable. You have the power to challenge and make change, to take the initiative and enjoy real responsibility. Whether it’s doing purposeful work, helping us grow or building the career you want – we’ll give you the support to do it all. Our secure network for smart meters is transforming Britain’s energy system and helping the country’s fight against climate change: we want you to be part of our journey.

    Company benefits:

    The DCC’s continued success depends on our people. It’s important to us that you enjoy coming to work, and feel healthy, happy and rewarded. In this role, you’ll have access to a range of benefits which you can choose from to create a personalized plan unique to your lifestyle.

    Please complete your application, so we can learn more about you. Your application will be carefully considered, and you’ll hear from us regarding its progress.

    Join the DCC and discover the power of you.

    What to do now

    Choose ‘Apply now’ to fill out our short application, so that we can find out more about you.

    As a Disability Confident member, DCC is committed to ensuring an inclusive and accessible recruitment process

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Senior DataOps Engineer

AWS Data Engineer

Senior DevOps Engineer

Data Architect

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.

Data Science Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Data science has become an indispensable cornerstone of modern business, driving decisions across finance, healthcare, e-commerce, manufacturing, and beyond. As organisations scramble to capitalise on the insights their data can offer, data scientists and machine learning (ML) experts find themselves in ever-higher demand. In the UK, which has cultivated a robust ecosystem of tech innovation and academic excellence, data-driven start-ups continue to blossom—fuelled by venture capital, government grants, and a vibrant talent pool. In this Q3 2025 Investment Tracker, we delve into the newly funded UK start-ups making waves in data science. Beyond celebrating their funding milestones, we’ll explore the job opportunities these investments have created for aspiring and seasoned data scientists alike. Whether you’re interested in advanced analytics, NLP (Natural Language Processing), computer vision, or MLOps, these start-ups might just offer the career leap you’ve been waiting for.

Portfolio Projects That Get You Hired for Data Science Jobs (With Real GitHub Examples)

Data science is at the forefront of innovation, enabling organisations to turn vast amounts of data into actionable insights. Whether it’s building predictive models, performing exploratory analyses, or designing end-to-end machine learning solutions, data scientists are in high demand across every sector. But how can you stand out in a crowded job market? Alongside a solid CV, a well-curated data science portfolio often makes the difference between getting an interview and getting overlooked. In this comprehensive guide, we’ll explore: Why a data science portfolio is essential for job seekers. Selecting projects that align with your target data science roles. Real GitHub examples showcasing best practices. Actionable project ideas you can build right now. Best ways to present your projects and ensure recruiters can find them easily. By the end, you’ll be equipped to craft a compelling portfolio that proves your skills in a tangible way. And when you’re ready for your next career move, remember to upload your CV on DataScience-Jobs.co.uk so that your newly showcased work can be discovered by employers looking for exactly what you have to offer.