Data Engineering Manager

TalentHawk
Birmingham
5 days ago
Create job alert

The Data Engineering Manager is responsible for establishing and overseeing the Data Engineering and Data Ops functions, ensuring the efficient and effective management of data to drive business value.


Key Responsibilities

  • Develop and own the data engineering strategy and roadmap to maximize long-term business value.
  • Prioritize, plan, and ensure the timely and high-quality delivery of data engineering initiatives.
  • Oversee third-line support, technology upgrades, and the introduction of new technologies within agreed timelines.
  • Provide technical guidance and mentorship to the team and wider organization on data engineering challenges and solutions.
  • Design and architect scalable data pipelines for efficient data ingestion, transformation, and loading.
  • Manage and optimize data platforms, including infrastructure, upgrades, and connectivity.
  • Build and lead a high-performing Data Engineering team, including internal staff and third-party resources.
  • Establish clear service definitions, SLAs, and performance expectations for the team, ensuring adherence.
  • Act as a data and analytics champion, fostering a culture of innovation and excellence within the Analytics & Insight team.
  • Stay abreast of industry trends and emerging technologies to enhance data infrastructure and capabilities.
  • Manage budgets for data-related activities and projects within the broader analytics budget.
  • Establish and manage third-party commercial agreements, including vendor selection and contract negotiations.
  • Collaborate with stakeholders across functions to align data engineering initiatives with business goals.
  • Leverage a deep understanding of the business and data landscape to drive value through data initiatives.


Required Expertise

  • Degree or equivalent qualification in a data-related discipline or relevant experience in high-performing Data Engineering and Analytics functions.
  • Proven leadership experience in managing Data, Environment, and Release Delivery teams, including resource and cost management.
  • Expertise in Data Engineering and Environment management, preferably in AWS, with experience in automation tools.
  • Strong knowledge of SQL & Python, with hands-on experience in data engineering tools and technologies.
  • Experience working on data science and machine learning projects.
  • Familiarity with Data Ops or DevOps environments and software development life cycles.


Key Competencies & Attributes

  • Strong team development and performance management skills.
  • Ability to coach and motivate teams under pressure and manage competing priorities.
  • A commitment to continuous learning and staying up to date with evolving technologies.
  • Attention to detail, fairness, and integrity.
  • Inquisitive and innovative mindset, with a drive to explore new processes and methodologies.
  • Excellent communication and collaboration skills, with the ability to engage stakeholders across business functions.
  • A positive leader with a growth mindset, striving to build a high-performing data function.
  • Strong decision-making and problem-solving capabilities.
  • Ability to balance business objectives with resource constraints and competing priorities.

Related Jobs

View all jobs

Platform Engineering Manager

Data Engineering Manager

Data Engineering Manager - ID40916

Data Engineering Manager - ID40916

Data Engineering Manager

Data Engineering Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Top 10 Best UK Universities for Data Science Degrees (2025 Guide)

Discover ten of the strongest UK universities for Data Science degrees in 2025. Compare entry requirements, course content, research strength and industry links to choose the right programme for you. Data is the currency of the modern economy, and professionals who can wrangle, model and interpret vast datasets are in demand across every sector—from biotechnology and finance to sport and public policy. UK universities have been at the forefront of statistics, artificial intelligence and large-scale computing for decades, making the country a prime destination for aspiring data scientists. Below, we profile ten institutions whose undergraduate or postgraduate pathways excel in data science. Although league tables vary each year, these universities have a proven record of excellence in teaching, research and industry collaboration.

Veterans in Data Science: A Military‑to‑Civilian Pathway into Analytical Careers

Introduction The UK Government’s National AI Strategy projects that data‑driven innovation could add £630 billion to the economy by 2035. Employers across healthcare, defence, and fintech are scrambling for professionals who can turn raw data into actionable insights. In 2024 alone, job‑tracker Adzuna recorded a 42 % year‑on‑year rise in data‑science vacancies, with average advertised salaries surpassing £65k. For veterans, that talent drought is a golden opportunity. Whether you plotted artillery trajectories, decrypted enemy comms, or managed aircraft engine logs, you have already practised the fundamentals of hypothesis‑driven analysis and statistical rigour. This guide explains how to translate your military experience into civilian data‑science language, leverage Ministry of Defence (MoD) transition programmes, and land a rewarding role building predictive models that solve real‑world problems. Quick Win: Take a peek at our live Junior Data Scientist roles to see who’s hiring this week.

Quantum-Enhanced AI in Data Science: Embracing the Next Frontier

Data science has undergone a staggering transformation in the past decade, evolving from a niche academic discipline into a linchpin of modern industry. Across every sector—finance, healthcare, retail, manufacturing—data scientists have become indispensable, leveraging statistical methods and machine learning to turn raw information into actionable insights. Yet as datasets grow ever larger and machine learning models become more computationally expensive, there are genuine questions about how far current methods can be pushed. Enter quantum computing, a nascent but promising technology grounded in the counterintuitive principles of quantum mechanics. Often dismissed just a few years ago as purely experimental, quantum computing is quickly gaining traction as prototypes evolve into cloud-accessible machines. When paired with artificial intelligence—particularly in the realm of data science—the results could be game-changing. From faster model training and complex optimisation to entirely new forms of data analysis, quantum-enhanced AI stands poised to disrupt established practices and create new opportunities. In this article, we will: Explore how data science has reached its current limits in certain areas, and why classical hardware might no longer suffice. Provide an accessible overview of quantum computing concepts and how they differ from classical systems. Examine the potential of quantum-enhanced AI to solve key data science challenges, from data wrangling to advanced machine learning. Highlight real-world applications, emerging job roles, and the skills you need to thrive in this new landscape. Offer actionable steps for data professionals eager to stay ahead of the curve in a rapidly evolving field. Whether you’re a practising data scientist, a student weighing up your future specialisations, or an executive curious about the next technological leap, read on. The quantum era may be closer than you think, and it promises to radically transform the very fabric of data science.