Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer - Mid Level

The Lead Agency
Liverpool
1 week ago
Create job alert
Overview

At TLA, we're proud to be consumer champions in the automotive space. We're constantly exploring smarter ways to connect people with the right cars — and that's where data engineering plays a key role.


You'll join a focused data team of 4 professionals (2 Data Scientists, 1 BI Developer, and yourself as Data Engineer), working collaboratively to deliver high-impact data solutions. As part of the team, you'll create data pipelines to extract diverse datasets from vehicle stock volumes to customer reviews and offers data in a timely, robust and efficient manner. We understand that great data forms the backbone of great data analysis, and as such the data engineer is crucial to the success of the data department overall.


TLA works with the modern data stack, utilising Snowflake for our data warehouse, dbt to transform data across our medallion architecture, and Apache Airflow for orchestration. Microsoft Azure is our choice of cloud provider for hosting infrastructure. Within the role you will be hands-on with all these exciting technologies.


Many datasets you extract will require web scraping, it’s important that you have some experience within this domain.


What You'll Be Doing


What You'll Be Doing

You'll play a key role in optimising our data assets by:



  • Building and refining data ingestion pipelines for new data assets including vehicle stock data, offers and pricing data, images and more.
  • Developing analytics-focused data models in dbt to supply analysts and data scientists with clean, well-structured datasets.
  • Implementing and maintaining CI/CD pipelines for our data infrastructure, ensuring automated testing and smooth deployments.
  • Participating in code reviews and contributing to team standards for data pipeline development.
  • Keeping on top of the latest datasets available within the automotive space and making recommendations about new data sources.
  • Supporting and expanding our Microsoft Azure infrastructure, optimising it for data pipeline performance.
  • Writing comprehensive data documentation for analytics-focused entities, accelerating your colleagues' understanding of available data.

What You'll Need to Succeed

Essential Requirements:



  • 2-4 years of experience building robust data pipelines in a commercial environment or through complex personal projects.
  • Strong Python skills including experience with web scraping libraries (scrapy, requests, selenium etc.) and writing production-ready, testable code.
  • Advanced SQL skills with experience in query optimisation and data modelling.
  • Solid understanding of software engineering principles (SOLID, DRY, design patterns) applied to data engineering.
  • Experience with version control (Git) and collaborative development workflows.
  • Understanding of CI/CD concepts and experience contributing to automated testing strategies.
  • Knowledge of data quality principles including data validation, monitoring, and automated testing frameworks
  • Understanding of a framework for modern ELT workflows i.e., dbt, sql-mesh etc.
  • Experience working with a cloud platform i.e., AWS, Azure, GCP etc.
  • Must be located within a 1-hour commute to Liverpool city centre (non-negotiable due to regular in-office collaboration requirements)

Nice-to-Have Skills:



  • Experience with both batch and near real-time data pipelines
  • Familiarity with Infrastructure as Code (Terraform)
  • Experience with dbt and medallion architecture patterns
  • Knowledge of Apache Airflow or similar orchestration tools
  • Azure cloud platform experience

Why Join TLA?

TLA is a fast-moving, innovative digital business that partners with some of the biggest automotive brands—including the Volkswagen Group, BMW Group, and Ford. Founded over 20 years ago, and with long-standing team members, we've built a close-knit, ambitious team that's passionate about pioneering technology to drive car sales.


We offer a supportive and collaborative environment, where you'll have the opportunity to grow and make an impact. Our hybrid model (2 days per week in our fantastic Liverpool city centre office) enables in-office teamwork and collaboration. We're a highly driven bunch that believes in respect, hard work, and giving back through charitable events and sporting efforts—everything from hiking to skydiving!


PLEASE NOTE: This role is only open to those with the right to work in the UK without the need for sponsorship or visa, now or in the future.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer - PySpark - Palantir - London - £75K

Data Engineer - Customer relationship

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.

Why the UK Could Be the World’s Next Data Science Jobs Hub

Data science is arguably the most transformative technological field of the 21st century. From powering artificial intelligence algorithms to enabling complex business decisions, data science is essential across sectors. As organisations leverage data more rapidly—from retailers predicting customer behaviour to health providers diagnosing conditions—demand for proficiency in data science continues to surge. The United Kingdom is particularly well-positioned to become a global data science jobs hub. With world-class universities, a strong tech sector, growing AI infrastructure, and supportive policy environments, the UK is poised for growth. This article delves into why the UK could emerge as a leading destination for data science careers, explores the job market’s current state, outlines future opportunities, highlights challenges, and charts what must happen to realise this vision.

The Best Free Tools & Platforms to Practise Data Science Skills in 2025/26

Data science continues to be one of the most exciting, high-growth career paths in the UK and worldwide. From predicting customer behaviour to detecting fraud and driving healthcare innovations, data scientists are at the forefront of digital transformation. But breaking into the field isn’t just about having a degree. Employers are looking for candidates who can demonstrate practical data science skills — analysing datasets, building machine learning models, and presenting insights that solve real business problems. The best part? You don’t need to spend thousands on premium courses or expensive software. There are dozens of high-quality, free tools and platforms that allow you to practise data science in 2025. This guide explores the best ones to help you learn, experiment, and build portfolio-ready projects.