Data Engineer III - Python, Databricks & AWS

JPMorgan Chase & Co.
Glasgow
3 weeks ago
Create job alert

We have an exciting and rewarding opportunity for you to take your software engineering career to the next level. As a PySpark/AWS Data Engineer III at JPMorgan Chase within the Payments Technology Regulatory Reporting team, you serve as a seasoned member of an agile team to design and deliver trusted market-leading cloud technology products in a secure, stable, and scalable way. You are responsible for carrying out critical technology solutions across multiple technical areas within various business functions in support of the firm's business objectives.


Job responsibilities

  • Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems
  • Creates secure and high-quality production code and maintains algorithms that run synchronously with appropriate systems
  • Produces architecture and design artifacts for complex applications while being accountable for ensuring design constraints are met by software code development
  • Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems
  • Proactively identifies hidden problems and patterns in data and uses these insights to drive improvements to coding hygiene and system architecture
  • Contributes to software engineering communities of practice and events that explore new and emerging technologies
  • Adds to team culture of diversity, opportunity, inclusion, and respect

Required qualifications, capabilities, and skills

  • 3+ years hands-on practical experience in system design, application development, testing, and operational stability
  • Hands-on practical experience in system design, application development, testing, and operational stability
  • Proficient in coding in one or more data engineering languages/platforms - Python / PySpark / Databricks or similarWorking experience with both relational and NoSQL databases
  • Experience and proficiency across the data lifecycle
  • Experience in developing, debugging, and maintaining code in a large corporate environment with one or more modern programming languages and database querying languages
  • Overall knowledge of the Software Development Life Cycle
  • Solid understanding of agile methodologies such as CI/CD, Application Resiliency, and Security
  • Demonstrated knowledge of software applications and technical processes within a technical discipline (e.g., cloud, artificial intelligence, machine learning, mobile, etc.)

Preferred qualifications, capabilities, and skills

  • Exposure to cloud technologies Databricks, AWS MSK, EC2, EKS, S3, RDS, Lambdas
  • Exposure to payment domain streaming systems
  • Exposure to payment regulatory reporting

About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.


We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success.


We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.


About the Team

J.P. Morgan's Commercial & Investment Bank is a global leader across banking, markets, securities services and payments. Corporations, governments and institutions throughout the world entrust us with their business in more than 100 countries. The Commercial & Investment Bank provides strategic advice, raises capital, manages risk and extends liquidity in markets around the world.


#J-18808-Ljbffr

Related Jobs

View all jobs

Software Engineer III- Data Engineer, Java/Python

Platform Data Engineer III - Python & AWS Cloud

Senior Data Engineer - PySpark, Databricks & AWS

Senior Software Engineer & Data Engineer (Java/Python)

Sr. Software/Data Engineer, Autonomy (AWS/Databricks)

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.