Software Engineer III- Data Engineer, Java/Python

JPMorganChase
Glasgow
4 days ago
Create job alert

We have an exciting and rewarding opportunity for you to take your software engineering career to the next level.


Job Responsibilities

  • Executes software solutions, design, development, and technical troubleshooting with ability to think beyond routine or conventional approaches to build solutions or break down technical problems
  • Creates secure and high-quality production code and maintains algorithms that run synchronously with appropriate systems
  • Produces architecture and design artifacts for complex applications while being accountable for ensuring design constraints are met by software code development
  • Gathers, analyzes, synthesizes, and develops visualizations and reporting from large, diverse data sets in service of continuous improvement of software applications and systems
  • Proactively identifies hidden problems and patterns in data and uses these insights to drive improvements to coding hygiene and system architecture
  • Contributes to software engineering communities of practice and events that explore new and emerging technologies
  • Adds to team culture of diversity, opportunity, inclusion, and respect

Required qualifications, capabilities, and skills

  • Formal training or certification on software engineering concepts and applied experience.
  • Proficiency in Data Engineering & Architecture, AI/ML with hands‑on experience in designing, implementing, testing, and ensuring the operational stability of large‑scale enterprise platforms and solutions
  • Advanced in one or more programming language(s) eg. Java, Python, C/C++, C#
  • Working knowledge of relational and NoSQL databases and data lake architectures
  • Experience in developing, debugging, and maintaining code (preferably in a large corporate environment) with one or more modern programming languages and database querying languages with good overlap of application & DB.
  • Experience in large scale data processing, using micro services, API design, Kafka, Redis, MemCached, Observability (Dynatrace, Splunk, Grafana or similar), Orchestration (Airflow, Temporal)
  • Proficiency in automation and continuous delivery methods
  • Proficient in all aspects of the Software Development Life Cycle
  • Advanced understanding of agile methodologies such as CI/CD, Application Resiliency, and Security
  • Demonstrated proficiency in software applications and technical processes within a technical discipline (e.g., cloud, artificial intelligence, machine learning, mobile, etc.)
  • Practical cloud native experience

Preferred qualifications, capabilities, and skills

  • Experience with modern data technologies such as Databricks or Snowflake.
  • Hands‑on experience with Spark/PySpark and other big data processing technologies
  • Knowledge of the financial services industry and their IT systems

About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first‑class business in a first‑class way approach to serving clients drives everything we do. We strive to build trusted, long‑term partnerships to help our clients achieve their business objectives.


We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit FAQs for more information about requesting an accommodation.


About the Team

Our professionals in our Corporate Functions cover a diverse range of areas from finance and risk to human resources and marketing. Our corporate teams are an essential part of our company, ensuring that we're setting our businesses, clients, customers and employees up for success.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer III - Python, Databricks & AWS

Data Engineer III - Python, Databricks & AWS

Senior Data Engineer: Python, Databricks & AWS

GenAI Software Engineer/Data Scientist

Senior Software & Data Engineer (Java/Python)

Data Scientist / Software Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.