Data Engineer

UST
London
3 weeks ago
Create job alert

This is a proactive pipelining initiative. We are not hiring for this role at the moment; however, we are building a pipeline of strong, qualified candidates. Once the position officially opens, we will reach out to shortlisted professionals to begin the interview process.


Location: London

Work mode: hybrid


About the Role:

We are seeking an experienced Data Engineer with deep expertise in Power BI and enterprise-scale reporting environments. The ideal candidate will be responsible for designing, optimizing, and maintaining high-performance semantic models, delivering end-to-end BI solutions, and supporting distributed reporting across multiple business domains.


Key Responsibilities:


Power BI Development & Engineering

  • Build and optimize Power BI Semantic Models for large datasets (4–5GB+).
  • Develop high-performance dashboards using Power BI Desktop & Power BI Service.
  • Write advanced, performance-optimized DAX following best practices.
  • Leverage Power Query (M) for scalable data ingestion and transformation.
  • Perform deep model optimization using Tabular Editor, DAX Studio, and performance analyzer tools.
  • Apply strong understanding of the Power BI calculation engine and performance tuning techniques.

Data Engineering & Integration

  • Design and implement robust data pipelines from Snowflake, SQL Server, SharePoint, and other enterprise systems.
  • Ensure data accuracy, consistency, and reliability across distributed reporting ecosystems.
  • Conduct data validation, quality checks, and impact assessments for model and logic changes.
  • Develop scalable tabular models and optimized reporting structures

Analytics, Reporting & Governance

  • Manage reporting across multiple teams/domains in a structured, enterprise BI environment.
  • Create clean, intuitive dashboards and wireframes aligned with business needs.
  • Perform unit testing and follow structured change management processes.
  • Support large-scale, multi-entity reporting use cases (preferred).


Required Skills & Experience:


  • 10+ years of experience in BI/Data Engineering roles.
  • Advanced expertise with: Power BI Desktop & Service, Power BI Semantic Models, DAX (advanced, optimized), Power Query (M), SQL (strong proficiency), Tabular Editor & DAX Studio
  • Experience working with large datasets and complex enterprise reporting environments.
  • Strong knowledge of data modeling principles and high-performance tabular architecture.
  • Excellent communication, problem-solving, and attention to detail.


We’re grateful for your interest in joining our team. Kindly note that only applicants whose experience and qualifications most closely align with the role will be contacted for the next steps. Thank you for your understanding.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.