Data Engineer - Akkodis

Jobster
Stevenage
4 days ago
Create job alert
Overview

Akkodis is a global leader in engineering, technology, and R&D, harnessing the power of connected data to drive digital transformation and innovation for a smarter, more sustainable future. As part of the Adecco Group, Akkodis combines the expertise of AKKA and Modis, with over 50,000 engineers and digital specialists across 30 countries in North America, EMEA, and APAC. Our teams bring extensive cross-sector knowledge in critical technology areas such as mobility, software services, robotics, simulations, cybersecurity, AI, and data analytics, enabling clients to tackle complex challenges in today’s rapidly evolving markets.


Scope

Akkodis is launching a new technical delivery team to drive a UK national program in collaboration with key partners, designed to transform and future-proof the central government’s workforce. By leveraging cutting-edge technology, strategic partnerships, and a comprehensive SaaS-based platform, this program will create an advanced, candidate-centric experience tailored to meet tomorrow’s public sector skill demands.


This high-impact initiative offers a unique opportunity to join a team dedicated to building a scalable, data-driven recruitment ecosystem. Through redesigning, building, and rolling out a sophisticated Big Data system, our diverse roles span across architecture, project management, data analytics, development, and technical support, giving you the chance to shape a dynamic, next-gen digital infrastructure.


You’ll be integral to our mission of crafting a seamless, powerful platform that empowers the public sector with the talent to navigate an evolving digital landscape.


Role

As part of this mission, the Data Engineer role focuses on the planning, execution, and management of data migration projects. Data Engineer are responsible for transferring data from legacy systems to new platforms, ensuring accuracy, consistency, and adherence to data integrity standards. Analyse existing data structures and understand business requirements for data migration. Design and implement robust data migration strategies. Develop scripts and processes to automate data extraction, transformation, and loading (ETL) processes. Work closely with stakeholders, including business users and IT teams, to ensure data requirements are met, and migrations proceed without disruption to business operations.


Responsibilities

  • Plan, coordinate, and execute data migration projects within set timelines.
  • Design and build ETL solutions, ensuring data quality and integrity throughout the migration process.
  • Troubleshoot and resolve data-related issues promptly to minimise disruption.
  • Collaborate with various teams to align migration processes with organisational goals and regulatory standards.
  • Proficiency in AWS ETL technologies, including Glue, Data Sync, DMS, Step Functions, Redshift, DynamoDB, Athena, Lambda, RDS, EC2 and S3 Datalake, CloudWatch for building and optimizing ETL pipelines and data migration workflows.
  • Working knowledge of Azure data engineering tools, including ADF (Azure Data Factory), Azure DB, Azure Synapse, Azure Data lake and Azure Monitor providing added flexibility for diverse migration and integration projects.
  • Prior experience with tools such as MuleSoft, Boomi, Informatica, Talend, SSIS, or custom scripting languages (Python, PySpark, SQL) for data extraction and transformation.
  • Prior experience with Data warehousing and Data modelling (Star Schema or Snowflake Schema).
  • Skilled in security frameworks such as GDPR, HIPAA, ISO 27001, NIST, SOX, and PII, with expertise in IAM, KMS, and RBAC implementation.
  • Cloud automation and orchestration tools like Terraform and Airflow.
  • Strong analytical skills to assess data quality, identify inconsistencies, and troubleshoot data migration issues.
  • Understanding of database management systems (SQL Server, Oracle, MySQL and NoSQL) and SQL query optimisation.
  • Ability to plan and execute data migration projects, manage timelines, and coordinate with stakeholders.
  • Precision in handling large volumes of data and ensuring accuracy during migration processes.
  • Effective communication skills to convey technical concepts and updates to diverse audiences, including non-technical stakeholders.
  • Cloud certifications like AWS and Azure are preferred.

Required Experience

  • Proven experience in data migration, data management, or ETL development.
  • Experience working with ETL tools and database management systems.
  • Familiarity with data integrity and compliance standards relevant to data migration.

Required Education

Bachelor’s degree in Information Technology, Computer Science, Data Science, or a related field.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.