Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer

Jefferson Frank
City of London
6 days ago
Create job alert

Data Engineer - Permanent

As a data Engineer, you will shape next-gen data architecture, build smart solutions with Web and Data Science teams, and harness Gen AI to move faster and smarter. You will be experienced in AI and enjoy writing code.

Responsibilities

* Build and maintain scalable distributed systems using Scala and Java
* Design complex Spark jobs, asynchronous APIs, and parallel processes
* Use Gen AI tools to enhance development speed and quality
* Collaborate in Agile teams to improve their data collection pipelines
* Apply best practices like TDD, SOLID, and their engineering standards
* Design relational and non-relational databases and data models
* Support the Data Science team in deploying machine learning models to production
* Leverage data structures, algorithms, and design patterns effectively
* Foster empathy and collaboration within the team and with customers

Preferred Experience

* Degree in Computer Science or equivalent practical experience
* Commercial experience with Spark, Scala, and Java (Python is a plus)
* Strong background in distributed systems (Hadoop, Spark, AWS)
* Skilled in SQL/NoSQL (PostgreSQL, Cassandra) and messaging tech (Kafka, RabbitMQ)
* Experience with orchestration tools (Chef, Puppet, Ansible) and ETL workflows (Airflow, Luigi)
* Familiarity with cloud platforms (AWS, GCP) and monitoring tools (ELK stack)
* Proven problem-solving mindset and ability to adapt solutions to complex challenges
* Hands-on use of Gen AI tools for coding, debugging, or system design

Fully Remote
Brilliant benefits package

Please send me a copy of your CV if you meet all of the requirements


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.