Data Engineer

myGwork - LGBTQ+ Business Community
Manchester
4 days ago
Create job alert
Overview

This job is with Capgemini, an inclusive employer and a member of myGwork – the largest global platform for the LGBTQ+ business community. Please do not contact the recruiter directly. Get the future you want!

Choosing Capgemini means choosing a company where you will be empowered to shape your career in the way you’d like, where you’ll be supported and inspired by a collaborative community of colleagues around the world, and where you’ll be able to reimagine what’s possible. Join us and help the world’s leading organizations unlock the value of technology and build a more sustainable, more inclusive world.

Your role

Provides advanced data solutions by using software to process, store, and serve data to others. Tests data quality and optimizes data availability. Ensures that data pipelines are scalable, repeatable, and secure. Utilizes a deep dive analytical skillset on a variety of internal and external data.

Your profile
  • Writes ETL (Extract / Transform / Load) processes, designs database systems, and develops tools for real-time and offline analytic processing.
  • Troubleshoots software and processes for data consistency and integrity. Integrates large scale data from a variety of sources for business partners to generate insight and make decisions.
  • Translates business specifications into design specifications and code. Responsible for writing complex programs, ad hoc queries, and reports. Ensures that all code is well structured, includes sufficient documentation, and is easy to maintain and reuse.
  • Partners with internal clients to gain an enhanced understanding of business functions and informational needs. Gains expertise in tools, technologies, and applications/databases in specific business areas and company-wide systems.
  • Leads all phases of solution development. Explains technical considerations at related meetings, including those with internal clients and less experienced team members.
  • Tests code thoroughly for accuracy of intended purpose. Reviews end product with the client to ensure adequate understanding. Provides data analysis guidance as required.
  • Designs and conducts training sessions on tools and data sources used by the team and self provisioners.
  • Provides job aids to team members and business users. Tests and implements new software releases through regression testing. Identifies issues and engages with vendors to resolve and elevate software into production. Participates in special projects and performs other duties as assigned.
Qualifications
  • Minimum of five years data analytics, programming, database administration, or data management experience.
  • Undergraduate degree or equivalent combination of training and experience.
About Capgemini

Capgemini is a global business and technology transformation partner, helping organizations to accelerate their dual transition to a digital and sustainable world, while creating tangible impact for enterprises and society. It is a responsible and diverse group of 350,000 team members in more than 50 countries. With its strong over 55-year heritage, Capgemini is trusted by its clients to unlock the value of technology to address the entire breadth of their business needs. It delivers end-to-end services and solutions leveraging strengths from strategy and design to engineering, all fueled by its market leading capabilities in AI, cloud and data, combined with its deep industry expertise and partner ecosystem. The Group reported 2023 global revenues of €22.5 billion.

Get the future you want | www.capgemini.com


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.