Data Engineer

Eclectic Recruitment Ltd
Shrewsbury
1 day ago
Create job alert

A fantastic opportunity has arisen for a Data Engineer (Generative AI) to join a developing international and transversal structure, supporting internal stakeholders through the design, delivery and maintenance of robust data solutions.


This role performs the duties of a Data Engineer (Generative AI) and reports into a senior technical lead within the organisation.


Key Responsibilities

  • Evaluate, design, build and maintain structured and unstructured data sets for a range of internal customers
  • Design and support resilient, secure and scalable data pipelines aligned to business needs
  • Collaborate closely with internal stakeholders to understand data requirements and optimise data usage
  • Ensure data quality, governance and compliance standards are met across all data assets
  • Support data exchange and processing solutions including ETL, APIs and integration layers
  • Contribute to the ongoing improvement of data platforms and architectures
  • Stay up to date with emerging technologies and provide input into the organisation’s data and AI technology roadmap


The ideal candidate would have

  • Experience with SQL technologies such as MS SQL or Oracle
  • Experience with noSQL technologies such as MongoDB, InfluxDB or Neo4J
  • Strong data exchange and processing experience including ETL, ESB and API-based integrations
  • Development experience, ideally using Python
  • Knowledge of big data technologies such as the Hadoop stack
  • Exposure to NLP and OCR technologies
  • Awareness or hands-on experience with Generative AI solutions
  • Experience with containerisation technologies such as Docker
  • Background in an industrial and/or defence environment


The ideal candidate must have

  • Proven experience working as a Data Engineer or in a closely related role
  • Strong understanding of data management, data quality and governance principles
  • Ability to work collaboratively across technical and non-technical teams
  • Experience designing secure and maintainable data solutions
  • Eligibility to meet UK security clearance requirements
  • Have Sole British Nationality


This position offers a lucrative benefits package, which includes but is not inclusive of:

  • Bonus scheme (based on company performance)
  • Annual pay reviews and promotion reviews (based on personal performance)
  • Overtime paid at an enhanced rate
  • Flexi-Leave (of up to 15 days)
  • Pension scheme (total contribution of up to 14%)
  • Subsidised site facilities and restaurants
  • Free parking
  • Excellent career progression and training / career development opportunities


If this role looks like your next challenge, please contact Keelan ASAP or apply via this advert!


Please note that due to the nature of the client’s business, only candidates who currently hold SOLE British Citizenship (without limitations) will be considered.


We endeavour to reply to every candidate, every time but if you haven’t heard back within 10 days, please understand that you have unfortunately been unsuccessful for this position, or the position has been filled. Please call the office or send an email to discuss other potential positions.

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.