Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Architect/Data Modeler London, UK

Galytix Limited
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Data Architect

Principal Data Engineer

Senior Enterprise Data Architect – Strategy & Insights

Galytix (GX) is delivering on the promise of AI.

GX has built specialised knowledge AI assistants for the banking and insurance industry. Our assistants are fed by sector-specific data and knowledge and easily adaptable through ontology layers to reflect institution-specific rules.

GX AI assistants are designed for Individual Investors, Credit and Claims professionals. Our assistants are being used right now in global financial institutions. Proven, trusted, non-hallucinating, our assistants are empowering financial professionals and delivering 10x improvements by supporting them in their day-to-day tasks.

Responsibilities:

  • Working closely with Product Owners, Solution Architects, and the Data Engineering community to ensure the best data solutions are delivered.
  • Triaging new requirements and providing impact assessments and appropriate estimates for amending data models in line with solution designs and requirements.
  • Developing and enhancing conceptual, logical, and physical data models in line with new requirements.
  • Maintaining data models and being their custodian, driving compliance as appropriate.
  • Defining and owning the role of the data modelling team within a client delivery team and providing guidance on a day-to-day basis.
  • Ensuring data models are developed to meet appropriate standards and principles.
  • Creating solutions that meet business needs and move towards end-state architecture.
  • Ensuring data models are documented, communicated, updated, and centrally managed in an appropriate manner.

Desired Skills:

  • A Computer Science or Engineering university degree.
  • 2+ years of experience working in Data Modeler or Solution Designer roles.
  • Prior experience on data engineering/ ETL intensive projects.
  • Domain knowledge and prior experience in Financial Services industry.
  • Proven capability of deploying analytical concepts into business as usual practice.
  • Excellent written and verbal command of English.
  • Self-motivated individual with strong sense for commitment and high-quality delivery.

Why You Do Not Want to Miss This Career Opportunity?

  • We are a mission-driven firm that is revolutionising the Insurance and Banking industry. We are not aiming to incrementally push the current boundaries; we redefine them.
  • Customer-centric organisation with innovation at the core of everything we do.
  • Capitalize on an unparalleled career progression opportunity.
  • Work closely with senior leaders who have individually served several CEOs in Fortune 100 companies globally.
  • Develop highly valued skills and build connections in the industry by working with top-tier Insurance and Banking clients on their mission-critical problems and deploying solutions integrated into their day-to-day workflows and processes.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.