Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Architect

Berg Search
Birmingham
9 months ago
Applications closed

Related Jobs

View all jobs

DATA ARCHITECT

Data Architect

Data Architect

Data Architect

Data Architect - London - Databricks - 110k + Bonus

Data Architect (Transformation Programme)

Role Overview


As aData Architect / Data Engineer, Integrations, you will tackle the challenges of building reliable, scalable data pipelines and integrations in complex, enterprise-scale environments. You will design, build, and optimize solutions that handle large-scale, inconsistent, and unstructured data, ensuring clean, structured, and secure data to power intelligent systems. You will also enable cloud-agnostic data storage and processing solutions to support client-specific environments, including multi-cloud, on-premises, or dedicated tenancies. Collaborating closely withResearch Engineers and Research Scientists, you will ensure data is modelled effectively to support advanced retrieval, real-time insights, and AI-enabled decision support.

Key Responsibilities

  • Architect and Build: Design, implement, and optimize scalable data pipelines and architectures to process high-velocity, large-scale data from diverse sources.
  • Integrate Diverse Systems: Develop and maintain integrations across enterprise platforms, project tools, communication systems, and external APIs to enable seamless bi-directional data flow across the organization.
  • Enhance Data Quality: Design processes to validate, transform, and structure inconsistent and unstructured data, ensuring it is clean, reliable, and optimized for downstream use.
  • Collaborate Across Teams: Work closely withResearch Engineers and Research Scientiststo ensure data is structured effectively to support advanced retrieval, query performance, and AI-enabled insights.
  • Leverage Best-in-Class Tools: Build and optimize streaming data pipelines using Azure tools such as Event Hubs, Stream Analytics, and Data Explorer to deliver real-time data insights, risk detection, and proactive alerting.
  • Utilize Cloud Expertise: Leverage Microsoft Azure services for secure, cost-effective, and high-performance data solutions, while enabling cloud-agnostic data processing and storage solutions to meet client-specific requirements, including AWS, GCP, or on-premises environments.
  • Ensure Security and Compliance: Implement role-based access controls, encryption, and logging to ensure data security and compliance with standards such asISO 27001, SOC 2, and GDPR.
  • Drive Efficiency: Identify opportunities to improve data flow, processing times, and cost-effectiveness across the data infrastructure.
  • Stay Current: Keep up to date with emerging trends in cloud platforms, data engineering, and real-time processing technologies to future-proof the infrastructure.


Expertise and Skills


Core Technical Competencies:

  • Cloud Platforms: Expertise in Microsoft Azure (Event Hubs, Stream Analytics, Data Explorer, Synapse) with a strong understanding of AWS, GCP, and the ability to deliver cloud-agnostic and on-premises data solutions.
  • Data Engineering Tools: Experience with Databricks, Apache Spark, or similar frameworks for large-scale data processing.
  • ETL/ELT Pipelines: Proven ability to design and manage scalable data pipelines using tools like Azure Data Factory, dbt, or Apache Airflow.
  • Programming Proficiency: Advanced proficiency in Python and SQL for building and automating data processing workflows.


Data Architecture & Integration:

  • Data Modelling: Experience designing relational, non-relational, and graph-based data models with strong permisioning and access control structures.
  • System Integrations: Familiarity with integrating enterprise tools (e.g., ERP, project management, document stores) and working with APIs or streaming frameworks.
  • Real-Time Processing: Practical experience with streaming technologies likeAzure Event Hubs, Stream Analytics, or other real-time tools.


Security & Compliance:

  • Best Practices: Experience implementing encryption, logging, and role-based access control to align with standards such asISO 27001, SOC 2, and GDPR.
  • Data Governance: Understanding of data lineage, cataloguing, and governance frameworks.


Mindset & Approach:

  • Problem Solver: Thrives on tackling complex data challenges and delivering robust, scalable solutions.
  • Collaborative Partner: Works effectively across teams, particularly withResearch Engineers and Research Scientists, to align data infrastructure with business and technical needs.
  • Detail-Oriented: Committed to ensuring high data quality, security, and performance.
  • Continuous Learner: Eager to explore emerging tools and techniques to push the boundaries of data engineering.


What Success Looks Like


Success in this role will be measured by the robustness and efficiency of our data pipelines, the seamless integration of diverse systems, and the ability to deliver clean, secure, and well-structured data. Your solutions will support client-specific needs, enabling processing and storage across cloud-agnostic, multi-cloud, or on-premises environments. Your work will directly power intelligent, AI-enabled insights and decision-making for enterprise-scale programmes.

What We Offer

  • Competitive salary
  • Bonus scheme
  • Wellness allowance
  • Fully remote working (with regular company get-togethers)
  • Private medical and dental insurance*
  • Life assurance, critical illness cover, and income protection*

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.