Data Architect

Pingewood
2 weeks ago
Create job alert

Data Architect
24 months – until December 2027
Hybrid – occasional travel to Reading
Rate TBD
Role Requirements:

  • Subject to clearance requirements
  • Experience: Proven track record as a Data Architect in complex, multinational environments.
  • Technical Expertise: Strong knowledge of Azure services (Data Lake, Data Factory, Synapse) and familiarity with emerging cloud technologies.
  • Security Awareness: Ability to design architectures with strict security boundaries, protective markings, export-control constraints, and multi-tenant segregation.
  • Collaboration: Comfortable working in greenfield projects and multinational defence contexts with varying data access classifications.
    Key Responsibilities:
  • Define and implement end-to-end data architecture across multiple business areas.
  • Ensure architectural consistency across nations and business domains in collaboration with the Data Architect Manager.
  • Evaluate and adopt new technologies to support secure multinational collaboration.
  • Design and maintain distributed data environments and modern data warehousing patterns.
  • Implement solutions that comply with security, regulatory, and export-control requirements.
  • Extensive experience in Data standards
  • ISO 10303 experience
  • Experience in working with engineering data integration
    Desirable Skills:
  • Hands-on experience with tools such as Databricks and Hadoop, and distributed data platforms.
  • Knowledge of modern data warehousing and big data processing frameworks.
  • Ability to work with Azure-based ecosystems and integrate emerging services.
  • Strong understanding of data governance in highly regulated environments.
  • Excellent communication and stakeholder management skills.
  • ERP
  • PLM
  • Manufacturing

Related Jobs

View all jobs

Data Architect

Data Architect

Data Architect

Data Architect

GCP Data Architect

Data Architect

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.