National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Analyst/Engineer, London

tecnoempleo.com
Greater London
4 months ago
Create job alert

Data Analyst/Engineer
Role: Data Analyst/Engineer

Type : Contractors

Duration : 3 to 6 months to start with

Location : UK, Remote

Senior Level Data Engineer/Data Analyst technical lead with data analytics experience, Databricks, Pyspark and Python

This is a key role that requires senior/lead with great communication skills who is very proactive with risk issue management.

Experience and Education Required

10+ years of experience as Data Analyst/Data Engineer/Data Scientist with Databricks on AWS expertise in designing and implementing scalable, secure, and cost-efficient data solutions on AWS

Job Profile:

Hands-on data analytics experience with Databricks on AWS, Pyspark and Python

Must have prior experience with migrating a data asset to the cloud using a GenAI automation option

Experience in migrating data from on-premises to AWS

Expertise in developing data models, delivering data-driven insights for business solutions

Experience in pretraining, fine-tuning, augmenting and optimizing large language models (LLMs)

Experience in Designing and implementing database solutions, developing PySpark applications to extract, transform, and aggregate data, generating insights

Data Collection Integration: Identify, gather, and consolidate data from diverse sources, including internal databases and spreadsheets ensuring data integrity and relevance.

Data Cleaning Transformation: Apply thorough data quality checks, cleaning processes, and transformations using Python (Pandas) and SQL to prepare datasets.

Automation Scalability: Develop and maintain scripts that automate repetitive data preparation tasks.

Autonomy Proactivity: Operate with minimal supervision, demonstrating initiative in problem-solving, prioritizing tasks, and continuously improving the quality and impact of your work

Technical Skills:

Minimum of 10 years of experience as a Data Analyst, Data Engineer, or related role, ideally with a bachelors degree or higher in a relevant field.

Strong proficiency in Python (Pandas, Scikit-learn, Matplotlib) and SQL, with experience working across various data formats and sources.

Proven ability to automate data workflows, implement code-based best practices, and maintain documentation to ensure reproducibility and scalability.

Behavioral Skills:

Ability to manage in tight circumstances, very pro-active with risk issue management

Requirement Clarification Communication: Interact directly with colleagues to clarify objectives, challenge assumptions.

Documentation Best Practices: Maintain clear, concise documentation of data workflows, coding standards, and analytical methodologies to support knowledge transfer and scalability.

Collaboration Stakeholder Engagement: Work closely with colleagues who provide data, raising questions about data validity, sharing insights, and co-creating solutions that address evolving needs.

Excellent communication skills for engaging with colleagues, clarifying requirements, and conveying analytical results in a meaningful, non-technical manner.

Python, Pyspark, Databricks

Related Jobs

View all jobs

Data Analyst – Data Engineer – ETL/Informatica/SQL – Data Ingestion – A[...]

Vacancy for Web Archiving Data Analyst and Engineer at The National Archives

Data Analyst

Data Automation Tester

Data Analytics Engineer Development and Integration / Consulting & Business Transformation · Lo[...]

Data Analyst

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs Skills Radar 2026: Emerging Tools, Languages & Platforms to Learn Now

The UK’s data science job market is evolving fast—from forecasting models and AI assistants to real-time decision systems. In 2026, data scientists aren’t just expected to build models—they’re responsible for shaping insights that fuel everything from patient care to predictive banking. Welcome to the Data Science Jobs Skills Radar 2026—your essential annual guide to the languages, tools, and platforms driving demand across the UK. Whether you’re entering the job market or reskilling mid-career, this roadmap helps you prioritise the skills that matter most right now.

How to Find Hidden Data Science Jobs in the UK Using Professional Bodies like the RSS, BCS & More

The data science job market in the UK is thriving—but also increasingly competitive. As organisations in finance, healthcare, retail, government, and tech accelerate digital transformation, the demand for data talent has soared. Yet many of the best data science jobs are never posted publicly. They’re shared behind closed doors—within professional networks, at invite-only events, or through member-only mailing lists and specialist interest groups. These “hidden” roles are often filled through referrals, collaborations, or direct outreach to trusted experts. In this guide, we’ll show you how to unlock these hidden opportunities by engaging with key UK professional bodies such as the Royal Statistical Society (RSS), BCS (The Chartered Institute for IT), and Turing Society, plus communities like PyData and AI UK. You’ll learn how to use directories, CPD events, and networks to move beyond job boards—and into roles where you’re approached, not just applying.

How to Get a Better Data Science Job After a Lay-Off or Redundancy

Redundancy can be tough to face, especially in a competitive field like data science. But it’s important to know: your experience, analytical thinking, and modelling skills are still in demand. Across sectors like healthcare, finance, e-commerce, government and AI startups, UK employers continue to seek data scientists who can deliver value through insight, prediction, and automation. This guide will walk you through how to bounce back from redundancy with purpose and clarity—whether you're a data analyst looking to step up, a mid-level data scientist, or a machine learning specialist seeking a better-aligned opportunity.