Data Analyst

Undisclosed
Peterborough
4 days ago
Create job alert
Role Title: Data Analyst
Duration: contract to run until 30/04/2026
Location: 3 days a week onsite across Peterbourgh, or Huntigdon, Lincoln (depends where the as‑is mapping workshops will take place), 2 days remote
Rate: up to £368 p/d Umbrellainside IR35
Role purpose / summary

We are looking to resource an individual to be part of the As Is Mapping Team. To deliver a “As‑Is” view of Asset Management processes across SAP and non‑SAP systems within the this will enable the client to:


Understand current operational processes and pain points. Define system‑agnostic business requirements. Support the High‑Level Design (HLD) phase with an approved Evidence Pack containing business requirements.


Must Have

  • SAP Asset Management and Work experience
  • Understand CRUD cycle
  • Understand Data objects, entry, exit, and be able to identify requirements

Skills

  • Someone with experience of the water industry Asset Management SAP.
  • Experience in asset management.
  • The ability to capture outputs through the workshops for; the scope of data objects being used throughout the process and capturing the CRUD cycle

All profiles will be reviewed against the required skills and experience. Due to the high number of applications we will only be able to respond to successful applicants in the first instance. We thank you for your interest and the time taken to apply!


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.