Cross-Asset Risk Premia Research – Quantitative Strategist – Vice President

JPMorganChase
London
6 days ago
Create job alert

Job Description

Join J.P. Morgan's Global Research team as a Vice President Quantitative Strategist, where your expertise will contribute to cutting-edge research and systematic strategies. Collaborate with internal teams and present insights to external clients, leveraging your strong quantitative skills and analytical mindset.

As an Vice President Quantitative Strategist within our Cross-Asset Risk Premia Research team, you will conduct innovative research in cross-asset risk premia strategies, contribute to research publications, and collaborate with internal sales and structuring teams. Your role will involve presenting to external clients and participating in client meetings.

Job Responsibilities
  • Conduct innovative research in cross-asset risk premia strategies.
  • Contribute to and originate periodic and dedicated research publications focused on systematic strategies.
  • Collaborate with internal sales and structuring teams.
  • Present research findings to external clients and participate in client meetings.
Required Qualifications, Capabilities, And Skills
  • Master’s or Ph.D. degree in a quantitative subject.
  • Strong quantitative and analytical skills.
  • Previous experience in a research or structuring department of an investment bank or relevant buy-side experience.
  • Excellent coding skills in Python.
  • In-depth knowledge of machine learning and big data.
  • Strong communication, presentation, and writing skills.
  • Team-player attitude.
Preferred Qualifications, Capabilities, And Skills
  • Previous experience in quant fixed income and / or credit strategies is a plus.

This role encompasses the performance of UK regulated activity. The successful candidate will therefore be subject to meeting UK regulatory requirements in the assessment of fitness, propriety, knowledge and competence (as assessed by the Firm) and (where appropriate) approval by the UK Financial Conduct Authority and / or the Prudential Regulation Authority to carry out such activities.

About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world’s most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants’ and employees’ religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.

About The Team

J.P. Morgan’s Commercial & Investment Bank is a global leader across banking, markets, securities services and payments. Corporations, governments and institutions throughout the world entrust us with their business in more than 100 countries. The Commercial & Investment Bank provides strategic advice, raises capital, manages risk and extends liquidity in markets around the world.


#J-18808-Ljbffr

Related Jobs

View all jobs

Cross-Asset Market Data Analyst

Cross-Asset Risk Premia Research – Quantitative Strategist – Vice President

Cross-Asset Market Data Analyst

Remote Lead Data Scientist – AI-Driven EdTech Impact

Data Engineering Lead

Sales Data Scientist Apprentice: Build Dashboards & AI Skills

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.