Credit Risk Data Scientist

Harnham
City of London
2 days ago
Create job alert

Do you want to rebuild commercial credit models used by lenders across the UK?

Have you worked hands-on with SME or corporate lending data end to end?

Are you looking for a stable, high-impact analytics role with real ownership?


Company overview

This organisation is a leading UK credit data provider operating at the heart of the lending ecosystem. They work with banks, fintechs, and commercial lenders to improve credit decision-making through data, analytics, and risk products. The environment is collaborative, stable, and low-turnover, with long-term investment in analytics rather than hype-driven AI.


The role

This is a hybrid Data Scientist / Model Developer position within the commercial lending product team. You will rebuild and enhance core credit products used by lenders, owning models end to end and working with rich commercial datasets.


Key responsibilities

• Build and rebuild commercial credit scorecards and decision models

• Develop affordability, segmentation, and forecasting models

• Own models end to end from data exploration to deployment

• Work with commercial datasets such as company registrations and filings

• Contribute to portfolio analytics and ad-hoc analytical projects

• Support the evolution of legacy products into modern solutions


Key details

• Salary: up to £75k base + bonus and standard benefits

• Location: London preferred; Leeds or Nottingham considered

• Working model: Hybrid, 3 days onsite (Tues–Thurs)

• Tech stack: Python, SQL

• Visa sponsorship: Not available


Requirements

• 3+ years’ experience in data science or credit risk modelling

• Proven experience with commercial or business lending data (SME/corporate)

• Strong Python modelling capability; SQL for data access

• Background in credit scorecards, affordability, segmentation, forecasting, or NPV modelling

• STEM degree

• Hands-on, delivery-focused mindset


Interested? Please apply below.

Related Jobs

View all jobs

Collections Data Scientist

Collections Data Scientist - Swindon, Swindon...

Head of Data Science

Consumer Lending Data Scientist

Consumer Lending Data Scientist

Consumer Lending Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.