Cloud Platform Engineer, Data Engineering

BET365
Manchester
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer — Cloud Platform Lead (Hybrid,Car Allowance)

Hybrid Data Engineer: Cloud Platform & AI

Data Engineer

Senior Scientific Data Engineer, Data Platform

Cloud Data Engineer: GCP & Big Data Analytics

Cloud Data Engineering Lead - Production Pipelines

Who we are looking for
A Cloud Platform Engineer, who will be embedded within the teams responsible for the delivery and operation of cloud services within Data Engineering.

If you are interested in applying for this job, please make sure you meet the following requirements as listed below.

The next stage of our initiative is to expand our public cloud capability and establish a seamless operating model. The aim is to leverage the speed of delivery and flexibility of the self-serve model, whilst maintaining a strong relationship with the core platform team.

We are embedding Cloud Platform Engineers within the Data Engineering team to help build, operate and support critical cloud products.

We’re looking for someone who has a passion for working on innovative initiatives and will make an immediate impact to the Business by bringing their own experience to a challenging but vibrant environment. You will be given the support and training to allow you to grow and progress within this position.

This role suits those with a development background transitioning to cloud technologies or cloud engineers who want to work closely with development teams.

This role is eligible for inclusion in the Company’s hybrid working from home policy.

Preferred Skills, Qualifications and Experience
Prior public cloud experience, preferably with Google Cloud.
Strong core platform knowledge in Projects and Folders, IAM and Billing.
Proficiency operating with Infrastructure as Code (IaC) using industry standard tooling, preferably Terraform and methodologies.
Knowledge of GitOps and preferably experience of use.
Proficiency of source code management; namely Git.
Confident in utilising custom automation and scripting using tools such as G-Cloud, CLI, Bash, Python and Golang.
Experience of modern platform stacks such as Kubernetes or GKE, as well as affiliated technologies and workflows including service mesh/ingress, CI/CD, monitoring stacks and security instruments.
Experience of using and managing Docker images.
Awareness of networking in Public Cloud environments.
Awareness of key security considerations when operating in the public cloud.

Main Responsibilities
Working as an embedded Cloud Platform Engineer within a software function to deploy, operate and support related cloud resources.
Taking accountability for the end-to-end delivery of cloud resources as part of software product initiatives.
Working with and influencing others to advocate and guide technical aspects of cloud adoption.
Working with the central Cloud Platform Team to embed key principles and standards in the operational running of responsible technologies.
Supporting and consulting with stakeholders.
Driving engineering excellence across your team by fostering modern engineering practices and processes.
Working with the central Cloud Platform Team to help steer the next iteration of self-serve automation technologies.

By applying to us you are agreeing to share your Personal Data in accordance with our Recruitment Privacy Policy -https://www.bet365careers.com/en/privacy-policy.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.