Data Engineer

London
14 hours ago
Create job alert

Google Cloud Data Engineer - Flexible Location (London, Bristol, or Manchester)

Locations: London, Bristol, or Manchester Hybrid

£500 inside IR35

6 months contract

About the Role

We're looking for a Google Cloud Data Engineer to joint our Public Sector client and play a key part in shaping modern, scalable data infrastructure.

In this role, you'll review existing environments, enhance data engineering standards, and build robust pipelines using cutting‑edge Google Cloud technologies. You'll work closely with delivery and product teams in an agile environment, helping deliver reliable, well-governed data solutions that power the business.

Key Responsibilities

Design, build, and maintain Google Cloud Platform (GCP) data pipelines
Review and enhance existing infrastructure to align with industry best practices
Develop and maintain data workflows using BigQuery and Dataform
Support robust alerting, monitoring, and observability
Contribute to infrastructure management using Docker and Terraform
Maintain strong data governance and quality standards
Collaborate within an agile, cross-functional delivery environmentRequired Skills & Experience

Hands-on experience with Google Cloud Platform, especially data pipelines
Strong working knowledge of BigQuery and Dataform
Experience with modern software development and engineering practices
Familiarity with Docker and Terraform
Confident reviewing, improving, and maintaining infrastructure
Programming experience with Python (preferred) or Ruby
Understanding of monitoring, alerting, and observability
Proactive approach with excellent problem‑solving skills

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Data Science Tools Do You Need to Know to Get a Data Science Job?

If you’re trying to break into data science — or progress your career — it can feel like you are drowning in names: Python, R, TensorFlow, PyTorch, SQL, Spark, AWS, Scikit-learn, Jupyter, Tableau, Power BI…the list just keeps going. With every job advert listing a different combination of tools, many applicants fall into a trap: they try to learn everything. The result? Long tool lists that sound impressive — but little depth to back them up. Here’s the straight-talk version most hiring managers won’t explicitly tell you: 👉 You don’t need to know every data science tool to get hired. 👉 You need to know the right ones — deeply — and know how to use them to solve real problems. Tools matter, but only in service of outcomes. So how many data science tools do you actually need to know to get a job? For most job seekers, the answer is not “27” — it’s more like 8–12, thoughtfully chosen and well understood. This guide explains what employers really value, which tools are core, which are role-specific, and how to focus your toolbox so your CV and interviews shine.

What Hiring Managers Look for First in Data Science Job Applications (UK Guide)

If you’re applying for data science roles in the UK, it’s crucial to understand what hiring managers focus on before they dive into your full CV. In competitive markets, recruiters and hiring managers often make their first decisions in the first 10–20 seconds of scanning an application — and in data science, there are specific signals they look for first. Data science isn’t just about coding or statistics — it’s about producing insights, shipping models, collaborating with teams, and solving real business problems. This guide helps you understand exactly what hiring managers look for first in data science applications — and how to structure your CV, portfolio and cover letter so you leap to the top of the shortlist.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.