Business Data Analyst

Peterborough
2 weeks ago
Create job alert

The role is responsible for analysing, interpreting, and leveraging data to drive strategic business decisions. This role combines technical expertise in data analysis with business acumen to identify trends, optimise operations, maintain price to optimise margin opportunities and support decision-making processes. The ideal candidate has strong analytical skills, a deep understanding of data systems, and the ability to communicate insights effectively to diverse stakeholders.

KEY RESPONSIBILITIES:

1.1 Data Analysis, Reporting & Pricing Management

  • Collect, analyse, and interpret complex datasets to identify trends, patterns, and insights.

  • Develop dashboards, reports, and visualisations to communicate findings to stakeholders.

  • Ensure data accuracy and integrity across all reports and analyses.

    1.2 Business Insights & Strategy

  • Collaborate with stakeholders to understand business challenges and objectives.

  • Translate business requirements into data-driven solutions and actionable recommendations.

  • Identify opportunities for process improvements and operational efficiencies.

    1.3 Data Management

  • Maintain and optimise data systems, databases, and reporting tools.

  • Ensure compliance with data governance policies and security standards.

  • Support data cleansing, migration, and integration projects as needed.

    1.4 Cross-Department Collaboration

  • Work closely with Operations, Finance, Sales, Marketing and IT to align data initiatives with business goals.

    PERFORMANCE INDICATORS FOR THE ROLE

    2.1 Data Accuracy and Quality

  • Accuracy Rate of Reports: Percentage of reports delivered without errors.

  • Data Cleaning Efficiency: Time spent on cleaning and preparing data versus analysing it.

  • Percentage of Missing Data Addressed: Proportion of missing data identified and resolved in datasets.

    2.2 Timeliness

  • On-Time Report Delivery: Reports delivered within the agreed timeline.

  • Turnaround Time for Ad Hoc Requests: Responsiveness to urgent or unexpected data analysis requests.

    2.3 Business Impact

  • Revenue Impact: Financial impact of decisions based on the analysis through increases in sales, cost savings and profitability.

  • Process Improvements: efficiencies and optimisations identified through analysis.

  • Error Reduction Rate: Decrease in operational errors attributed to data-driven recommendations.

  • Automation Implementation: Number of processes or reports automated to save time.

  • Data Visualization Effectiveness: Percentage of stakeholders who find dashboards and visualizations clear and actionable.

    ABOUT YOU

    3.0 QUALIFICATIONS

  • Graduate calibre, with a Degree in Analytics, Statistics, Economics or other Business-related field.

    4.0 EXPERIENCE

  • Proven experience in data analysis or business intelligence in an engineering, manufacturing, technical, or capital equipment environment.

    5.0 PROVEN SKILLS

  • Demonstratable expertise in data analytic tools and technologies and ERP Systems.

  • Advanced knowledge of statistical and predictive analysis.

  • Strong business acumen.

  • Planning skills – able to develop high quality sales/marketing plans.

  • Systems/process management – able to establish and ensure compliance with apt sales-management processes to be implemented by the team.

  • Verbal & written communication skills – able to produce and present a variety of written material including reports, promotions, policies etc to non-technical stakeholders.

  • IT literate across all standard office functions

Related Jobs

View all jobs

Business Data Analyst

Business Data Analyst

Business Process Analyst. Strong process mapping, analysis and Communication skills

Nuclear Security Business Operations Analyst

Marketing Data Analyst

Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Essential Books to Read to Nail Your Data Science Career in the UK

Data science continues to be one of the most exciting and rapidly evolving fields in tech. With industries across the UK—ranging from finance and healthcare to e-commerce and government—embracing data-driven decision-making, the demand for skilled data scientists has soared. Whether you're a recent graduate looking for your first role or a professional aiming to advance your career, staying updated through books is crucial. In this article, we explore ten essential books every data science job seeker in the UK should read. Each book provides valuable insights into core concepts, practical applications, and industry-standard tools, helping you build skills employers are actively looking for.

Navigating Data Science Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Data science has taken centre stage in the modern workplace. Organisations rely on data-driven insights to shape everything from product innovation and customer experience to operational efficiency and strategic planning. As a result, there is a growing need for skilled data scientists who can analyse large volumes of data, build predictive models, communicate findings effectively, and collaborate cross-functionally. If you are looking to accelerate your data science career—or even land your first role—attending data science career fairs can be a game-changer. Unlike traditional online applications, face-to-face interactions let you showcase your personality, passion, and communication skills in addition to your technical expertise. However, to stand out in a busy environment, you need a clear strategy: from polishing your personal pitch and asking thoughtful questions to following up with a memorable message. In this article, we’ll guide you through every step of making a strong impression at data science career fairs in the UK and beyond.

Common Pitfalls Data Science Job Seekers Face and How to Avoid Them

Data science has become a linchpin for decision-making and innovation across countless industries, from finance and healthcare to tech and retail. The demand for data scientists in the UK continues to climb, with businesses seeking professionals who can interpret complex datasets, build predictive models, and communicate actionable insights. Despite this high demand, the job market can be extremely competitive—and many applicants unknowingly fall into avoidable traps. Whether you’re an aspiring data scientist fresh out of university, a professional transitioning from a quantitative role, or a seasoned analyst looking to expand your skill set, it’s crucial to navigate your job search effectively. In this article, we explore the most common pitfalls data science job seekers face and provide pragmatic advice to help you stand out. By refining your CV, portfolio, interview strategies, and communication skills, you can significantly increase your chances of landing a rewarding data science role. If you’re looking for your next data science job in the UK, don’t forget to explore the listings at Data Science Jobs. Read on to discover how to avoid critical mistakes and position yourself for success.