Assistant Professor in Statistical Data Science

Heriot-Watt University
Kilmarnock
6 days ago
Create job alert
Assistant Professor in Statistical Data Science

Join to apply for the Assistant Professor in Statistical Data Science role at Heriot-Watt University.

Overview

The Department of Actuarial Mathematics and Statistics at Heriot-Watt University, Edinburgh, is seeking to enhance and expand its strengths in research and teaching by appointing an Assistant Professor in Statistical Data Science, or related area. This is an open-ended position.

Role and Responsibilities
  • Lead, carry out and publish internationally excellent research in statistical data science, or a related field.
  • Apply for research funding through either the submission of high-quality grant proposals or funding from industry, with the goal of building a research group.
  • Undertake knowledge exchange activities to promote and disseminate research.
  • Carry out administrative and recruitment activities as required to achieve these aims.
  • Develop and deliver innovative teaching in statistics, actuarial science, financial mathematics or related fields at undergraduate and postgraduate level.
  • Teach on the Data Science joint programme with Xidian University.
  • Be responsible to the Head of Department for performing the above activities in a way that maintains and enhances the School’s reputation for excellence.
Education, Qualifications and Experience

As a successful candidate, you will lead, carry out and publish internationally excellent research in your field. You will have a strong track record of research in actuarial data science, which may also include machine learning, financial risk and climate change risk, demonstrated through publications, citations, external invitations and research funding.

You will be established as an international research leader, with the ambition to build a world-class academic group and have the experience or potential to supervise PhD students and post-doctoral researchers. You will have the relevant experience to engage in and innovate our specialised statistical, data science, actuarial and financial degree programmes. You will have the drive and commitment to contribute to the expansion of our teaching programmes.

Essential Criteria
  • E1. PhD in statistics, or related field.
  • E2. Track-record of high-quality research in statistical data science with internationally excellent publications.
  • E3. Demonstrable teaching experience related to the Department’s courses, as well as skills to supervise undergraduate and postgraduate dissertations in Statistical Data Science.
  • E4. Excellent interpersonal and teamwork skills.
Desirable Criteria
  • D1. Track record of obtaining research funding.
  • D2. Track record of successful supervision of PhD students and/or post-doctoral researchers.
  • D3. Potential to provide leadership in the development and implementation of research strategy and in the planning, organisation and development of learning and teaching activities in the Department.
How to Apply

Interested applicants must submit via the Heriot-Watt University online recruitment system: (1) a cover letter describing interest and suitability for the post; (2) a full CV, including a list of publications; (3) an outline of research plans for the next few years; and (4) a one-page summary of teaching philosophy or approach.

Applications can be submitted until midnight on Monday 2 February 2026. Shortlisting is expected in the week of 9 February, with interviews in late February or early March.

Contact

If you have questions, you may contact the Head of Department, Professor George Streftaris ().

About the Institution

Heriot-Watt University values diversity and equality of opportunity in employment and aims to create an inclusive environment. The university is committed to equality and diversity and welcomes applications from all sectors of society.


#J-18808-Ljbffr

Related Jobs

View all jobs

Assistant Professor in Statistical Data Science

Statistical Data Science — Assistant Professor

AssistantAssociate Professor in Statistical Data Science

Health Data Science Professor (Asst/Assoc)

Research Data Analyst

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.