UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustaina[...]

The International Society for Bayesian Analysis
Exeter
1 week ago
Create job alert
UKRI Centre for Doctoral Training in Environmental Intelligence: Data Science & AI for Sustainable Futures: 10 funded PhD places

Mar 13, 2019


Many of the most important problems we face today are related to the environment. Climate change, healthy oceans, water security, clean air, biodiversity loss, and resilience to extreme events all play a crucial role in determining our health, wealth, safety and future development. The vision of this Centre for Doctoral Training (CDT) is to provide a world‑class training environment in Environmental Intelligence (EI): the integration of data from multiple inter‑related sources to provide the evidence and tools that are required for informed decision‑making, improved risk management, and the technological innovation that will lead us towards a more sustainable interaction with the natural environment.
Students will receive training in the range of skills required to become leaders in EI:
(i) the computational skills required to analyse data from a wide variety of sources;
(ii) expertise in environmental challenges;
(iii) an understanding of the governance, ethics and the potential societal impacts of collecting, mining, sharing and interpreting data, together with the ability to communicate and engage with a diverse range of stakeholders.
The training programme has been designed to be applicable to students with a range of backgrounds. Supervisors cover a range of disciplines and experiences related to the use of data in addressing environmental challenges. Students will have the opportunity to work with the CDT’s external partners, including the Met Office, and a range of international institutions and businesses, to ensure that they are well versed in both cutting edge methodology and on‑the‑ground policy and business implementation.


First cohort: ten fully‑funded places are available to start in September 2019.


We welcome applications for this CDT in Environmental Intelligence (EI) to start in September 2019. Applications are made for entry to the 4‑year training programme, including training in the fundamentals of EI and supervision of your PhD research.
Fully funded 4‑year studentships are available for UK and EU students. The funding is for four years and covers University tuition fees and all course fees, an annual stipend (which is £15,009 for the academic year 2019/20), and funds towards research activities. A limited number of studentships are available for exceptional international applicants. Self‑funded students are welcome to apply.


Entry requirements


We welcome applications from those who are expected to receive a 1st class or 2i undergraduate degree in a wide variety of subjects relevant to the application of Data Science and AI to environmental challenges. These might include, for example, computer science, statistics, mathematics, climate, health, economics, philosophy, and social and environmental sciences. For those without a computer science/mathematics background, additional training will be provided (if required) both before and after joining the CDT. We are happy to discuss alternative requirements for those with non‑standard qualifications and/or experience.
For international students, the minimum requirement for entry to the CDT is IELTS 6.5 (with at least 6.0 in each of the four components), or equivalent.


Applying to the CDT


Initially, expressions of interest should be sent by email: . If you would like to have an informal discussion about the CDT, please contact us and we will arrange a suitable time for you to talk to one of the team.


Expressions of interest should include:



  • Title, First Name, Surname, Email address
  • A short statement (no more than 250 words) explaining your motivation for applying to this CDT
  • A 2‑page CV which includes your academic and work experience, your nationality and country of normal residence (for the past 3 years, not including full time education)
  • Scans of your academic transcript(s)
  • Details of where you heard about this CDT

An initial selection will be made by a recruitment panel and selected candidates will be invited to an interview (that can be conducted by Skype).


Deadlines for submission


Application deadlines for the first cohort will be on 31st March 2019, 31st May 2019 and 31st July 2019. Interviews for those in the first round of applications are expected to start in April 2019. You are advised to apply early as the application process is competitive.


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Science Apprentice – Level 6 (Degree)

Data Science Apprentice – Level 6 (Degree)

Data Science Apprenticeship (Level 6) — Flexible Hours & Growth

Data Science Apprentice Level 6: ML & Analytics

Research Associate: Quantitative Microbiology

Research Associate: Quantitative Microbiology

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Data Science Jobs: What Universities Aren’t Teaching

Data science has become one of the most visible and sought-after careers in the UK technology market. From financial services and retail to healthcare, media, government and sport, organisations increasingly rely on data scientists to extract insight, guide decisions and build predictive models. Universities have responded quickly. Degrees in data science, analytics and artificial intelligence have expanded rapidly, and many computer science courses now include data-focused pathways. And yet, despite the volume of graduates entering the market, employers across the UK consistently report the same problem: Many data science candidates are not job-ready. Vacancies remain open. Hiring processes drag on. Candidates with impressive academic backgrounds fail interviews or struggle once hired. The issue is not intelligence or effort. It is a persistent skills gap between university education and real-world data science roles. This article explores that gap in depth: what universities teach well, what they often miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in data science.

Data Science Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Thinking about switching into data science in your 30s, 40s or 50s? You’re far from alone. Across the UK, businesses are investing in data science talent to turn data into insight, support better decisions and unlock competitive advantage. But with all the hype about machine learning, Python, AI and data unicorns, it can be hard to separate real opportunities from noise. This article gives you a practical, UK-focused reality check on data science careers for mid-life career switchers — what roles really exist, what skills employers really hire for, how long retraining typically takes, what UK recruiters actually look for and how to craft a compelling career pivot story. Whether you come from finance, marketing, operations, research, project management or another field entirely, there are meaningful pathways into data science — and age itself is not the barrier many people fear.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.