Tech Lead / Lead Data Engineer - Outside IR35 - SC + NPPV3 Cleared

Newington, Greater London
2 days ago
Create job alert

Tech Lead / Lead Data Engineer (AWS Data Platform)
Rate: £500 - £550 p/d outside IR35
Length: 1st April to end of November (initially)
Location: London (hybrid – typically 1 day per week on-site, remaining remote)
Security Clearance: SC Clearance essential + NPPV3

Overview
We’re looking for a hands-on Tech Lead to lead a small team delivering secure, scalable data solutions within a highly regulated environment. You’ll take technical ownership across an AWS-based data platform using S3, Glue, and Redshift, working closely with delivery leadership, architecture stakeholders, and product teams to deliver incremental value.

This role suits someone who can balance technical leadership, hands-on engineering, and stakeholder-facing communication, while maintaining strong standards around security, quality, and operational resilience.

Key Responsibilities
Lead and mentor a small engineering team across data engineering, analytics engineering, and DevOps.
Own the technical design of data ingestion, transformation, storage, and access patterns.
Drive engineering standards including code quality, testing, CI/CD, Infrastructure as Code, and security-by-design.
Translate high-level requirements into solution increments, technical designs, and well-scoped delivery tickets.
Deliver and optimise data modelling approaches (e.g., star/snowflake schemas) and performance tuning practices.
Build reliable and cost-effective ETL/ELT pipelines, including orchestration and event-driven patterns where appropriate.
Partner with security stakeholders to ensure compliance, including IAM least privilege, encryption, auditability, and secure access controls.
Implement and maintain CI/CD pipelines for data workflows and platform components.
Ensure strong monitoring and operational discipline using cloud-native tooling and engineering best practice.
Communicate technical decisions, trade-offs, risks, and delivery progress to senior stakeholders.
Promote a culture of learning, quality, and continuous improvement.Required Skills & Experience
Proven experience as a Tech Lead / Lead Data Engineer delivering AWS-based data platforms.
Strong hands-on AWS experience, including:

Amazon S3 (data lake patterns, partitioning, lifecycle policies, cost optimisation)
AWS Glue (Jobs, Crawlers, PySpark, Glue Data Catalog, orchestration)
Amazon Redshift (performance tuning, sort/dist keys, Spectrum, WLM)
Strong development skills across:

Python (including PySpark)
SQL (DDL/DML, analytical queries, data performance considerations)
Experience with Infrastructure as Code (Terraform or CloudFormation).
CI/CD experience using tools such as GitHub Actions, Azure DevOps, CodePipeline, CodeBuild, etc.
Strong understanding of security & governance in regulated environments:

IAM, KMS encryption, Secrets Manager/SSM, audit logging
Delivery capability across Agile (Scrum/Kanban) environments with strong backlog refinement discipline.
Confident stakeholder management with the ability to explain technical choices and gain consensus

Related Jobs

View all jobs

Tech Lead/Lead Data Engineer - Outside IR35 - SC + NPPV3 Cleared

Tech Lead - Data Engineering

Senior Principal Data Engineer & Tech Lead, Data Platform

Senior Principal Data Engineer - Tech Lead, Data Platform

Engineering Manager - Data Quality & Governance

Lead Data Engineer SQL Python

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Data Science Job Ad That Attracts the Right People

Data science plays a critical role in how organisations across the UK make decisions, build products and gain competitive advantage. From forecasting and personalisation to risk modelling and experimentation, data scientists help translate data into insight and action. Yet many employers struggle to attract the right data science candidates. Job adverts often generate high volumes of applications, but few applicants have the mix of analytical skill, business understanding and communication ability the role actually requires. At the same time, experienced data scientists skip over adverts that feel vague, inflated or misaligned with real data science work. In most cases, the issue is not a lack of talent — it is the quality and clarity of the job advert. Data scientists are analytical, sceptical of hype and highly selective. A poorly written job ad signals unclear expectations and immature data practices. A well-written one signals credibility, focus and serious intent. This guide explains how to write a data science job ad that attracts the right people, improves applicant quality and positions your organisation as a strong data employer.

Maths for Data Science Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are applying for data science jobs in the UK, the maths can feel like a moving target. Job descriptions say “strong statistical knowledge” or “solid ML fundamentals” but they rarely tell you which topics you will actually use day to day. Here’s the truth: most UK data science roles do not require advanced pure maths. What they do require is confidence with a tight set of practical topics that come up repeatedly in modelling, experimentation, forecasting, evaluation, stakeholder comms & decision-making. This guide focuses on the only maths most data scientists keep using: Statistics for decision making (confidence intervals, hypothesis tests, power, uncertainty) Probability for real-world data (base rates, noise, sampling, Bayesian intuition) Linear algebra essentials (vectors, matrices, projections, PCA intuition) Calculus & gradients (enough to understand optimisation & backprop) Optimisation & model evaluation (loss functions, cross-validation, metrics, thresholds) You’ll also get a 6-week plan, portfolio projects & a resources section you can follow without getting pulled into unnecessary theory.

Neurodiversity in Data Science Careers: Turning Different Thinking into a Superpower

Data science is all about turning messy, real-world information into decisions, products & insights. It sits at the crossroads of maths, coding, business & communication – which means it needs people who see patterns, ask unusual questions & challenge assumptions. That makes data science a natural fit for many neurodivergent people, including those with ADHD, autism & dyslexia. If you’re neurodivergent & thinking about a data science career, you might have heard comments like “you’re too distracted for complex analysis”, “too literal for stakeholder work” or “too disorganised for large projects”. In reality, the same traits that can make traditional environments difficult often line up beautifully with data science work. This guide is written for data science job seekers in the UK. We’ll explore: What neurodiversity means in a data science context How ADHD, autism & dyslexia strengths map to common data science roles Practical workplace adjustments you can request under UK law How to talk about your neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in data science – & how to turn “different thinking” into a real career advantage.