Sustainability Data Engineer

St James's Square
2 weeks ago
Create job alert

Remote Role – Central London Office
   
Sustainability Data Engineer

The Organisation

We develop cutting-edge navigator software for the global agricultural sector, helping farmers transition toward more sustainable practices through science-backed analytics. Our software provides direct access to advanced sustainability models and insights.

Our Sustainability division consists of specialised Research Software Engineers who transform scientific findings into practical models for farmers and land managers, enabling them to understand their systems better and build more sustainable, profitable operations.

Position Overview

We're seeking an experienced Data Engineer to join our Sustainability team as the lead technical specialist in our R-focused Research Software Engineering group. You'll create and maintain the technical infrastructure that enables our sustainability experts and data scientists to develop innovative agricultural sustainability solutions.

Core Functions
Lead technical best practices across R package design, code architecture, documentation, and dependency management
Establish and oversee versioning and CI/CD systems to enhance team workflows
Guide team members in code architecture, development standards, and deployment processes
Serve as the technical authority for computationally demanding tasks, especially spatial analytics and GIS-based product development
Implement scientific research findings into production-ready code
Collaborate with our Engineering department to align code design, versioning strategies, and release cycles Essential Qualifications
Master's degree or equivalent in informatics or life sciences (or bachelor's degree with 5+ years relevant industry experience)
Deep knowledge of R programming and package development
Proven experience managing dependencies and ensuring reproducibility in R production environments
Strong background in version control systems and CI/CD implementation
History of successful collaboration with IT teams on data science workflows
Proficiency with Windows and/or Linux environments
Experience with GIS systems and spatial data analysis
Exceptional problem-solving abilities and adaptability
Leadership experience with strong communication skills
Structured approach to quantitative challenges
Comfort working in a dynamic startup environment Qualifications
Microsoft Azure experience, particularly R integration
Application containerization knowledge (Docker, etc.)
Familiarity with Python, JavaScript, C++, bash, or other languages
Web application development experience (React, .NET)
Background in data security and IP protection workflows
Knowledge of environmental sustainability concepts (carbon footprinting, lifecycle analysis, environmental modeling)
Experience in agricultural or land management sectors If you are based in the UK and meet the criteria listed then apply now!  The Morris Sinclair team will give you a call

Related Jobs

View all jobs

GIS Data Engineer

Senior Data Engineer

Data Engineer

Trainee Database Engineer

Full Stack Software Engineer

Sustainability Advisor

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Data Science Pros Fuel Creativity and Innovation

Data science sits at the dynamic intersection of statistics, computer science, and domain expertise, driving powerful innovations in industries ranging from healthcare to finance, and from retail to robotics. Yet, the daily reality for many data scientists can be a far cry from starry-eyed talk of AI and machine learning transformations. Instead, it often involves endless data wrangling, model tuning, and scrutiny over metrics. Maintaining a sense of creativity in this environment can be an uphill battle. So, how do successful data scientists continue to dream big and innovate, even when dealing with the nitty-gritty of data pipelines, debugging code, or explaining results to stakeholders? Below, we outline ten practical strategies to help data analysts, machine learning engineers, and research scientists stay inspired and push their ideas further. Whether you’re just starting out or looking to reinvigorate a long-standing career, these pointers can help you find fresh sparks of motivation.

Top 10 Data Science Career Myths Debunked: Key Facts for Aspiring Professionals

Data science has become one of the most sought-after fields in the tech world, promising attractive salaries, cutting-edge projects, and the opportunity to shape decision-making in virtually every industry. From e-commerce recommendation engines to AI-powered medical diagnostics, data scientists are the force behind innovations that drive productivity and improve people’s lives. Yet, despite the demand and glamour often associated with this discipline, data science is also shrouded in misconceptions. Some believe you need a PhD in mathematics or statistics; others assume data science is exclusively about machine learning or coding. At DataScience-Jobs.co.uk, we’ve encountered a wide array of myths that can discourage talented individuals or mislead those exploring a data science career. This article aims to bust the top 10 data science career myths—providing clarity on what data scientists actually do and illuminating the true diversity and inclusiveness of this exciting field. Whether you’re a recent graduate, a professional looking to pivot, or simply curious about data science, read on to discover the reality behind the myths.

Global vs. Local: Comparing the UK Data Science Job Market to International Landscapes

How to evaluate salaries, opportunities, and work culture in data science across the UK, the US, Europe, and Asia Data science has proven to be more than a passing trend; it is now a foundational pillar of modern decision-making in virtually every industry—from healthcare and finance to retail and entertainment. As the volume of data grows exponentially, organisations urgently need professionals who can transform raw information into actionable insights. This high demand has sparked a wave of new opportunities for data scientists worldwide. In this article, we’ll compare the UK data science job market to those in the United States, Europe, and Asia. We’ll explore hiring trends, salary benchmarks, and cultural nuances to help you decide whether to focus your career locally or consider opportunities overseas or in fully remote roles. Whether you’re a fresh graduate looking for your first data science position, an experienced data professional pivoting from analytics, or a software engineer eager to break into machine learning, understanding the global data science landscape can be a game-changer. By the end of this overview, you’ll be better equipped to navigate the expanding world of data science—knowing which skills and certifications matter most, how salaries differ between regions, and what to expect from distinct work cultures. Let’s dive in.