Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Sr. Data Scientist London, UK

Galytix Limited
London
1 month ago
Create job alert

Galytix (GX) is delivering on the promise of AI.

GX has built specialised knowledge AI assistants for the banking and insurance industry. Our assistants are fed by sector-specific data and knowledge and easily adaptable through ontology layers to reflect institution-specific rules.

GX AI assistants are designed for Individual Investors, Credit and Claims professionals. Our assistants are being used right now in global financial institutions. Proven, trusted, non-hallucinating, our assistants are empowering financial professionals and delivering 10x improvements by supporting them in their day-to-day tasks.

Responsibilities:

  • Contributing by processing, analyzing, and synthesizing information applied to a live client problem at scale.
  • Developing machine learning models to extract insights from both structured and unstructured data in areas such as NLP and Computer Vision.
  • The role requires skills in both prototyping and developing individual solutions but also implementation and integration in a production environment.

Desired Skills:

  • A university degree in Mathematics, Computer Science, Engineering, Physics or similar.
  • 6+ years of relevant experience in several areas of Data Mining, Classical Machine Learning, Deep Learning, NLP and Computer Vision.
  • Experience with Large Scale/ Big Data technology, such as Hadoop, Spark, Hive, Impala, PrestoDb.
  • Hands-on capability developing ML models using open-source frameworks in Python and R and applying them on real client use cases.
  • Proficient in one of the deep learning stacks such as PyTorch or Tensorflow.
  • Working knowledge of parallelisation and async paradigms in Python, Spark, Dask, Apache Ray.
  • An awareness and interest in economic, financial and general business concepts and terminology.
  • Excellent written and verbal command of English.
  • Strong problem-solving, analytical and quantitative skills.
  • A professional attitude and service orientation with the ability to work with our international teams.
  • Experience in leading a team is an advantage.

Why You Do Not Want to Miss This Career Opportunity:

  • We are a mission-driven firm that is revolutionising the Insurance and Banking industry. We are not aiming to incrementally push the current boundaries; we redefine them.
  • Customer-centric organisation with innovation at the core of everything we do.
  • Capitalize on an unparalleled career progression opportunity.
  • Work closely with senior leaders who have individually served several CEOs in Fortune 100 companies globally.
  • Develop highly valued skills and build connections in the industry by working with top-tier Insurance and Banking clients on their mission-critical problems and deploying solutions integrated into their day-to-day workflows and processes.


#J-18808-Ljbffr

Related Jobs

View all jobs

Sr Data Scientist (London)

Sr Data Scientist (London)

Sr Data Scientist (London)

Sr. Data Scientist, GenAI Algorithms (Based in Dubai)

Sr. Business Intelligence Engineer, AWS GDSP A&I

AI & Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Data Science Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK data science hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise rigorous problem framing, high‑quality analytics & modelling, experiment/causality, production awareness (MLOps), governance/ethics, and measurable product or commercial impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for product/data scientists, applied ML scientists, decision scientists, econometricians, growth/marketing analysts, and ML‑adjacent data scientists supporting LLM/AI products. Who this is for: Product/decision/data scientists, applied ML scientists, econometrics & causal inference specialists, experimentation leads, analytics engineers crossing into DS, ML generalists with strong statistics, and data scientists collaborating with platform/MLOps teams in the UK.

Why Data Science Careers in the UK Are Becoming More Multidisciplinary

Data science once meant advanced statistics, machine learning models and coding in Python or R. In the UK today, it has become one of the most in-demand professions across sectors — from healthcare to finance, retail to government. But as the field matures, employers now expect more than technical modelling skills. Modern data science is multidisciplinary. It requires not just coding and algorithms, but also legal knowledge, ethical reasoning, psychological insight, linguistic clarity and human-centred design. Data scientists are expected to interpret, communicate and apply data responsibly, with awareness of law, human behaviour and accessibility. In this article, we’ll explore why data science careers in the UK are becoming more multidisciplinary, how these five disciplines intersect with data science, and what job-seekers & employers need to know to succeed in this transformed field.

Data Science Team Structures Explained: Who Does What in a Modern Data Science Department

Data science is one of the most in-demand, dynamic, and multidisciplinary areas in the UK tech and business landscape. Organisations from finance, retail, health, government, and beyond are using data to drive decisions, automate processes, personalise services, predict trends, detect fraud, and more. To do that well, companies don’t just need good data scientists; they need teams with clearly defined roles, responsibilities, workflows, collaboration, and governance. If you're aiming for a role in data science or recruiting for one, understanding the structure of a data science department—and who does what—can make all the difference. This article breaks down the key roles, how they interact across the lifecycle of a data science project, what skills and qualifications are typical in the UK, expected salary ranges, challenges, trends, and how to build or grow an effective team.