Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Sr Data Scientist (London)

VONQ
Greater London
1 week ago
Create job alert

AryaXAI stands at the forefront of AI innovation, revolutionizing AI for mission-critical, highly regulated industries by building explainable, safe, and aligned systems that scale responsibly. Our mission is to create AI tools that empower researchers, engineers, and organizations—including banks, financial institutions, and large enterprises—to unlock AI's full potential while maintaining transparency, safety, and regulatory compliance.

Our team thrives on a shared passion for cutting-edge innovation, collaboration, and a relentless drive for excellence. At AryaXAI, every team member contributes hands-on in a flat organizational structure that values curiosity, initiative, and exceptional performance, ensuring that our work not only advances technology but also meets the rigorous demands of regulated sectors.

Role Overview

As a Senior Data Scientist at AryaXAI, you will be uniquely positioned to tackle large-scale, enterprise-level challenges in regulated environments. You’ll lead complex AI implementations that prioritize explainability, risk management, and compliance, directly impacting mission-critical use cases in the financial services industry and beyond. Your expertise will be crucial in deploying sophisticated models that address the nuances and stringent requirements of regulated sectors.

Responsibilities

  • Model Evaluation & Customization:
  • Evaluate, fine-tune, and implement appropriate AI/ML models on AryaXAI.com tailored for enterprise and regulated use cases. Consider factors such as accuracy, computational efficiency, scalability, and regulatory constraints.
  • Architectural Assessment:
  • Assess and recommend various model architectures, ensuring that selected solutions meet the high standards required by complex business problems in financial services and other regulated industries.
  • Enterprise Integration:
  • Lead the deployment of AI models into production environments, ensuring seamless integration with existing enterprise systems while upholding strict compliance and security standards.
  • Advanced AI Techniques:
  • Drive the development and implementation of state-of-the-art AI architectures, incorporating advanced explainability, AI safety, and alignment techniques suited for regulated applications.
  • Specialization & Innovation:
  • Take ownership of specialized areas within machine learning/deep learning to address specific challenges related to complex datasets, regulatory requirements, and enterprise-grade AI solutions.
  • Collaboration & Quality Assurance:
  • Collaborate closely with Machine Learning Engineers (MLEs) and Software Development Engineers (SDEs) to roll out features, manage quality assurance, and ensure that all deployed models meet both performance and compliance benchmarks.
  • Documentation & Compliance:
  • Create and maintain detailed technical and product documentation, with an emphasis on auditability and adherence to regulatory standards.


Qualifications

  • Educational & Professional Background:
  • A solid academic background in machine learning, deep learning, or reinforcement learning, ideally complemented by experience in regulated industries such as financial services or enterprise sectors.
  • Regulated Industry Experience (FS, Banking or Insurance is preferred)
  • Proven track record (2+ years) of hands-on experience in data science within highly regulated environments, with a deep understanding of the unique challenges and compliance requirements in these settings.
  • Technical Expertise:
  • Demonstrated proficiency with deep learning frameworks (TensorFlow, PyTorch, etc.) and experience in implementing advanced techniques (Transformer models, GANs, etc.).
  • Diverse Data Handling:
  • Experience working with varied data types—including textual, tabular, categorical, and image data—and the ability to develop models that handle complex, enterprise-level datasets.
  • Deployment Proficiency:
  • Expertise in deploying AI solutions in both cloud and on-premise environments, ensuring robust, scalable, and secure integrations with enterprise systems.
  • Publications & Contributions:
  • Peer-reviewed publications or significant contributions to open-source tools in AI are highly regarded.

Related Jobs

View all jobs

Sr. Data Engineer, Prime Video Growth and Commerce Analytics

Sr. Data Analyst

Sr. Data Engineers to work with data from across the spectrum of healthcare domains, refining requirements with customers, developing data models, extracting data from various source systems and database formats

Data Analytics Sr Lead Analyst - C14 - CHENNAI

Sr. Business Intelligence Engineer, Prime Video Store, EU TVOD

Sr Software Developer - C++ - Graphs & Data Visualizations

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Data Science Jobs: The Best Months to Apply & Why

The UK's data science sector has matured into one of Europe's most intellectually rewarding and financially attractive technology markets, with roles spanning from junior data analysts to principal data scientists and heads of artificial intelligence. With data science positions commanding salaries from £30,000 for graduate data analysts to £140,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this intellectually stimulating and rapidly evolving field. Unlike traditional analytical roles, data science hiring follows distinct patterns influenced by business intelligence cycles, research funding schedules, and machine learning project timelines. The sector's unique combination of mathematical rigour, business impact requirements, and cutting-edge technology adoption creates predictable hiring windows that strategic professionals can leverage to advance their careers in extracting insights from tomorrow's data. This comprehensive guide explores the optimal timing for data science job applications in the UK, examining how enterprise analytics strategies, academic research cycles, and artificial intelligence initiatives influence recruitment patterns, and why strategic timing can determine whether you join a pioneering AI research team or miss the opportunity to develop the next generation of intelligent systems.

Pre-Employment Checks for Data Science Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in data science reflects the discipline's unique position at the intersection of statistical analysis, machine learning innovation, and strategic business intelligence. Data scientists often have privileged access to comprehensive datasets, proprietary algorithms, and business-critical insights that form the foundation of organisational strategy and competitive positioning. The data science industry operates within complex regulatory frameworks spanning GDPR, sector-specific data protection requirements, and emerging AI governance regulations. Data scientists must demonstrate not only technical competence in statistical modelling and machine learning but also deep understanding of research ethics, data privacy principles, and the societal implications of algorithmic decision-making. Modern data science roles frequently involve analysing personally identifiable information, financial data, healthcare records, and sensitive business intelligence across multiple jurisdictions and regulatory frameworks simultaneously. The combination of analytical privilege, predictive capabilities, and strategic influence makes thorough candidate verification essential for maintaining compliance, security, and public trust in data-driven insights and automated systems.

Why Now Is the Perfect Time to Launch Your Career in Data Science: The UK's Analytics Revolution

The United Kingdom stands at the forefront of a data science revolution that's reshaping how businesses make decisions, governments craft policies, and society tackles its greatest challenges. From the machine learning algorithms powering London's fintech innovation to the predictive models guiding Manchester's smart city initiatives, Britain's transformation into a data-driven economy has created an unprecedented demand for skilled data scientists that far outstrips the available talent. If you've been contemplating a career transition or seeking to position yourself at the cutting edge of the digital economy, data science represents one of the most intellectually stimulating, financially rewarding, and socially impactful career paths available today. The convergence of big data maturation, artificial intelligence mainstream adoption, business intelligence evolution, and cross-industry digital transformation has created the perfect conditions for data science career success.