Sr. Data Scientist, AWS Industries

Amazon UK
London
1 month ago
Applications closed

Related Jobs

View all jobs

Sr. Solutions Architect (Cloud Data, Life Science, ELN, LIMS) - Europe Remote

Industry 4.0 Sr Application Developer

Sr Associate Data Analytics

Sr. Engineer - GCP

SC Cleared Sr AWS DevOps Platform Engineer

Senior Data Operations Manager

DESCRIPTION

Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting-edge Generative AI algorithms to solve real-world problems with significant impact? The AWS Industries Team helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost-efficiently.

You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience.

In this Data Scientist role, you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems.

Key job responsibilities

  1. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges.
  2. Interact with customers directly to understand the business problem, help and aid them in the implementation of generative AI solutions, deliver briefing and deep dive sessions to customers, and guide customers on adoption patterns and paths to production.
  3. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholders.
  4. Provide customer and market feedback to Product and Engineering teams to help define product direction.

About the team

Diverse Experiences
Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn't followed a traditional path, or includes alternative experiences, don't let it stop you from applying.

Why AWS
Amazon Web Services (AWS) is the world's most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating - that's why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Work/Life Balance
We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there's nothing we can't achieve in the cloud.

Inclusive Team Culture
Here at AWS, it's in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship and Career Growth
We're continuously raising our performance bar as we strive to become Earth's Best Employer. That's why you'll find endless knowledge-sharing, mentorship, and other career-advancing resources here to help you develop into a better-rounded professional.

BASIC QUALIFICATIONS

  1. Bachelor's degree in a quantitative field such as statistics, mathematics, data science, business analytics, economics, finance, engineering, or computer science, or Master's degree.
  2. Experience working as a Data Scientist.
  3. Experience with data scripting languages (e.g., SQL, Python, R, or equivalent) or statistical/mathematical software (e.g., R, SAS, Matlab, or equivalent).
  4. Experience in machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience.
  5. Experience applying theoretical models in an applied environment.

PREFERRED QUALIFICATIONS

  1. PhD in a quantitative field such as statistics, mathematics, data science, business analytics, economics, finance, engineering, or computer science.
  2. Experience with machine learning/statistical modeling data analysis tools and techniques, and parameters that affect their performance experience.
  3. Hands-on experience with deep learning (e.g., CNN, RNN, LSTM, Transformer).
  4. Prior experience in training and fine-tuning of Large Language Models (LLMs) and knowledge of AWS platform and tools or equivalent cloud experience.

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult our Privacy Notice (https://www.amazon.jobs/en/privacy_page) to know more about how we collect, use and transfer the personal data of our candidates.

Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you're applying in isn't listed, please contact your Recruiting Partner.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Essential Books to Read to Nail Your Data Science Career in the UK

Data science continues to be one of the most exciting and rapidly evolving fields in tech. With industries across the UK—ranging from finance and healthcare to e-commerce and government—embracing data-driven decision-making, the demand for skilled data scientists has soared. Whether you're a recent graduate looking for your first role or a professional aiming to advance your career, staying updated through books is crucial. In this article, we explore ten essential books every data science job seeker in the UK should read. Each book provides valuable insights into core concepts, practical applications, and industry-standard tools, helping you build skills employers are actively looking for.

Navigating Data Science Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

Data science has taken centre stage in the modern workplace. Organisations rely on data-driven insights to shape everything from product innovation and customer experience to operational efficiency and strategic planning. As a result, there is a growing need for skilled data scientists who can analyse large volumes of data, build predictive models, communicate findings effectively, and collaborate cross-functionally. If you are looking to accelerate your data science career—or even land your first role—attending data science career fairs can be a game-changer. Unlike traditional online applications, face-to-face interactions let you showcase your personality, passion, and communication skills in addition to your technical expertise. However, to stand out in a busy environment, you need a clear strategy: from polishing your personal pitch and asking thoughtful questions to following up with a memorable message. In this article, we’ll guide you through every step of making a strong impression at data science career fairs in the UK and beyond.

Common Pitfalls Data Science Job Seekers Face and How to Avoid Them

Data science has become a linchpin for decision-making and innovation across countless industries, from finance and healthcare to tech and retail. The demand for data scientists in the UK continues to climb, with businesses seeking professionals who can interpret complex datasets, build predictive models, and communicate actionable insights. Despite this high demand, the job market can be extremely competitive—and many applicants unknowingly fall into avoidable traps. Whether you’re an aspiring data scientist fresh out of university, a professional transitioning from a quantitative role, or a seasoned analyst looking to expand your skill set, it’s crucial to navigate your job search effectively. In this article, we explore the most common pitfalls data science job seekers face and provide pragmatic advice to help you stand out. By refining your CV, portfolio, interview strategies, and communication skills, you can significantly increase your chances of landing a rewarding data science role. If you’re looking for your next data science job in the UK, don’t forget to explore the listings at Data Science Jobs. Read on to discover how to avoid critical mistakes and position yourself for success.